LoraTheExplorer / lora.py
multimodalart's picture
Update lora.py
a5e4f9a
raw
history blame
49.7 kB
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import math
import os
from typing import Dict, List, Optional, Tuple, Type, Union
from diffusers import AutoencoderKL
from transformers import CLIPTextModel
import numpy as np
import torch
import re
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
):
"""if alpha == 0 or None, alpha is rank (no scaling)."""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
# if limit_rank:
# self.lora_dim = min(lora_dim, in_dim, out_dim)
# if self.lora_dim != lora_dim:
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
# else:
self.lora_dim = lora_dim
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier = multiplier
self.org_module = org_module # remove in applying
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
org_forwarded = self.org_forward(x)
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return org_forwarded
lx = self.lora_down(x)
# normal dropout
if self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
return org_forwarded + lx * self.multiplier #* scale
class LoRAInfModule(LoRAModule):
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
**kwargs,
):
# no dropout for inference
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)
self.org_module_ref = [org_module] # 後から参照できるように
self.enabled = True
# check regional or not by lora_name
self.text_encoder = False
if lora_name.startswith("lora_te_"):
self.regional = False
self.use_sub_prompt = True
self.text_encoder = True
elif "attn2_to_k" in lora_name or "attn2_to_v" in lora_name:
self.regional = False
self.use_sub_prompt = True
elif "time_emb" in lora_name:
self.regional = False
self.use_sub_prompt = False
else:
self.regional = True
self.use_sub_prompt = False
self.network: LoRANetwork = None
def set_network(self, network):
self.network = network
# freezeしてマージする
def merge_to(self, sd, dtype, device):
# get up/down weight
up_weight = sd["lora_up.weight"].to(torch.float).to(device)
down_weight = sd["lora_down.weight"].to(torch.float).to(device)
# extract weight from org_module
org_sd = self.org_module.state_dict()
weight = org_sd["weight"].to(torch.float)
# merge weight
if len(weight.size()) == 2:
# linear
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# print(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + self.multiplier * conved * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
# 復元できるマージのため、このモジュールのweightを返す
def get_weight(self, multiplier=None):
if multiplier is None:
multiplier = self.multiplier
# get up/down weight from module
up_weight = self.lora_up.weight.to(torch.float)
down_weight = self.lora_down.weight.to(torch.float)
# pre-calculated weight
if len(down_weight.size()) == 2:
# linear
weight = self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = self.multiplier * conved * self.scale
return weight
def set_region(self, region):
self.region = region
self.region_mask = None
def default_forward(self, x):
# print("default_forward", self.lora_name, x.size())
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier #* self.scale
def forward(self, x):
if not self.enabled:
return self.org_forward(x)
if self.network is None or self.network.sub_prompt_index is None:
return self.default_forward(x)
if not self.regional and not self.use_sub_prompt:
return self.default_forward(x)
if self.regional:
return self.regional_forward(x)
else:
return self.sub_prompt_forward(x)
def get_mask_for_x(self, x):
# calculate size from shape of x
if len(x.size()) == 4:
h, w = x.size()[2:4]
area = h * w
else:
area = x.size()[1]
mask = self.network.mask_dic[area]
if mask is None:
raise ValueError(f"mask is None for resolution {area}")
if len(x.size()) != 4:
mask = torch.reshape(mask, (1, -1, 1))
return mask
def regional_forward(self, x):
if "attn2_to_out" in self.lora_name:
return self.to_out_forward(x)
if self.network.mask_dic is None: # sub_prompt_index >= 3
return self.default_forward(x)
# apply mask for LoRA result
lx = self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
mask = self.get_mask_for_x(lx)
# print("regional", self.lora_name, self.network.sub_prompt_index, lx.size(), mask.size())
lx = lx * mask
x = self.org_forward(x)
x = x + lx
if "attn2_to_q" in self.lora_name and self.network.is_last_network:
x = self.postp_to_q(x)
return x
def postp_to_q(self, x):
# repeat x to num_sub_prompts
has_real_uncond = x.size()[0] // self.network.batch_size == 3
qc = self.network.batch_size # uncond
qc += self.network.batch_size * self.network.num_sub_prompts # cond
if has_real_uncond:
qc += self.network.batch_size # real_uncond
query = torch.zeros((qc, x.size()[1], x.size()[2]), device=x.device, dtype=x.dtype)
query[: self.network.batch_size] = x[: self.network.batch_size]
for i in range(self.network.batch_size):
qi = self.network.batch_size + i * self.network.num_sub_prompts
query[qi : qi + self.network.num_sub_prompts] = x[self.network.batch_size + i]
if has_real_uncond:
query[-self.network.batch_size :] = x[-self.network.batch_size :]
# print("postp_to_q", self.lora_name, x.size(), query.size(), self.network.num_sub_prompts)
return query
def sub_prompt_forward(self, x):
if x.size()[0] == self.network.batch_size: # if uncond in text_encoder, do not apply LoRA
return self.org_forward(x)
emb_idx = self.network.sub_prompt_index
if not self.text_encoder:
emb_idx += self.network.batch_size
# apply sub prompt of X
lx = x[emb_idx :: self.network.num_sub_prompts]
lx = self.lora_up(self.lora_down(lx)) * self.multiplier * self.scale
# print("sub_prompt_forward", self.lora_name, x.size(), lx.size(), emb_idx)
x = self.org_forward(x)
x[emb_idx :: self.network.num_sub_prompts] += lx
return x
def to_out_forward(self, x):
# print("to_out_forward", self.lora_name, x.size(), self.network.is_last_network)
if self.network.is_last_network:
masks = [None] * self.network.num_sub_prompts
self.network.shared[self.lora_name] = (None, masks)
else:
lx, masks = self.network.shared[self.lora_name]
# call own LoRA
x1 = x[self.network.batch_size + self.network.sub_prompt_index :: self.network.num_sub_prompts]
lx1 = self.lora_up(self.lora_down(x1)) * self.multiplier * self.scale
if self.network.is_last_network:
lx = torch.zeros(
(self.network.num_sub_prompts * self.network.batch_size, *lx1.size()[1:]), device=lx1.device, dtype=lx1.dtype
)
self.network.shared[self.lora_name] = (lx, masks)
# print("to_out_forward", lx.size(), lx1.size(), self.network.sub_prompt_index, self.network.num_sub_prompts)
lx[self.network.sub_prompt_index :: self.network.num_sub_prompts] += lx1
masks[self.network.sub_prompt_index] = self.get_mask_for_x(lx1)
# if not last network, return x and masks
x = self.org_forward(x)
if not self.network.is_last_network:
return x
lx, masks = self.network.shared.pop(self.lora_name)
# if last network, combine separated x with mask weighted sum
has_real_uncond = x.size()[0] // self.network.batch_size == self.network.num_sub_prompts + 2
out = torch.zeros((self.network.batch_size * (3 if has_real_uncond else 2), *x.size()[1:]), device=x.device, dtype=x.dtype)
out[: self.network.batch_size] = x[: self.network.batch_size] # uncond
if has_real_uncond:
out[-self.network.batch_size :] = x[-self.network.batch_size :] # real_uncond
# print("to_out_forward", self.lora_name, self.network.sub_prompt_index, self.network.num_sub_prompts)
# for i in range(len(masks)):
# if masks[i] is None:
# masks[i] = torch.zeros_like(masks[-1])
mask = torch.cat(masks)
mask_sum = torch.sum(mask, dim=0) + 1e-4
for i in range(self.network.batch_size):
# 1枚の画像ごとに処理する
lx1 = lx[i * self.network.num_sub_prompts : (i + 1) * self.network.num_sub_prompts]
lx1 = lx1 * mask
lx1 = torch.sum(lx1, dim=0)
xi = self.network.batch_size + i * self.network.num_sub_prompts
x1 = x[xi : xi + self.network.num_sub_prompts]
x1 = x1 * mask
x1 = torch.sum(x1, dim=0)
x1 = x1 / mask_sum
x1 = x1 + lx1
out[self.network.batch_size + i] = x1
# print("to_out_forward", x.size(), out.size(), has_real_uncond)
return out
def parse_block_lr_kwargs(nw_kwargs):
down_lr_weight = nw_kwargs.get("down_lr_weight", None)
mid_lr_weight = nw_kwargs.get("mid_lr_weight", None)
up_lr_weight = nw_kwargs.get("up_lr_weight", None)
# 以上のいずれにも設定がない場合は無効としてNoneを返す
if down_lr_weight is None and mid_lr_weight is None and up_lr_weight is None:
return None, None, None
# extract learning rate weight for each block
if down_lr_weight is not None:
# if some parameters are not set, use zero
if "," in down_lr_weight:
down_lr_weight = [(float(s) if s else 0.0) for s in down_lr_weight.split(",")]
if mid_lr_weight is not None:
mid_lr_weight = float(mid_lr_weight)
if up_lr_weight is not None:
if "," in up_lr_weight:
up_lr_weight = [(float(s) if s else 0.0) for s in up_lr_weight.split(",")]
down_lr_weight, mid_lr_weight, up_lr_weight = get_block_lr_weight(
down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0))
)
return down_lr_weight, mid_lr_weight, up_lr_weight
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
vae: AutoencoderKL,
text_encoder: Union[CLIPTextModel, List[CLIPTextModel]],
unet,
neuron_dropout: Optional[float] = None,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
# block dim/alpha/lr
block_dims = kwargs.get("block_dims", None)
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
# 以上のいずれかに指定があればblockごとのdim(rank)を有効にする
if block_dims is not None or down_lr_weight is not None or mid_lr_weight is not None or up_lr_weight is not None:
block_alphas = kwargs.get("block_alphas", None)
conv_block_dims = kwargs.get("conv_block_dims", None)
conv_block_alphas = kwargs.get("conv_block_alphas", None)
block_dims, block_alphas, conv_block_dims, conv_block_alphas = get_block_dims_and_alphas(
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
)
# remove block dim/alpha without learning rate
block_dims, block_alphas, conv_block_dims, conv_block_alphas = remove_block_dims_and_alphas(
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
)
else:
block_alphas = None
conv_block_dims = None
conv_block_alphas = None
# rank/module dropout
rank_dropout = kwargs.get("rank_dropout", None)
if rank_dropout is not None:
rank_dropout = float(rank_dropout)
module_dropout = kwargs.get("module_dropout", None)
if module_dropout is not None:
module_dropout = float(module_dropout)
# すごく引数が多いな ( ^ω^)・・・
network = LoRANetwork(
text_encoder,
unet,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
conv_lora_dim=conv_dim,
conv_alpha=conv_alpha,
block_dims=block_dims,
block_alphas=block_alphas,
conv_block_dims=conv_block_dims,
conv_block_alphas=conv_block_alphas,
varbose=True,
)
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
return network
# このメソッドは外部から呼び出される可能性を考慮しておく
# network_dim, network_alpha にはデフォルト値が入っている。
# block_dims, block_alphas は両方ともNoneまたは両方とも値が入っている
# conv_dim, conv_alpha は両方ともNoneまたは両方とも値が入っている
def get_block_dims_and_alphas(
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
):
num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + 1
def parse_ints(s):
return [int(i) for i in s.split(",")]
def parse_floats(s):
return [float(i) for i in s.split(",")]
# block_dimsとblock_alphasをパースする。必ず値が入る
if block_dims is not None:
block_dims = parse_ints(block_dims)
assert (
len(block_dims) == num_total_blocks
), f"block_dims must have {num_total_blocks} elements / block_dimsは{num_total_blocks}個指定してください"
else:
print(f"block_dims is not specified. all dims are set to {network_dim} / block_dimsが指定されていません。すべてのdimは{network_dim}になります")
block_dims = [network_dim] * num_total_blocks
if block_alphas is not None:
block_alphas = parse_floats(block_alphas)
assert (
len(block_alphas) == num_total_blocks
), f"block_alphas must have {num_total_blocks} elements / block_alphasは{num_total_blocks}個指定してください"
else:
print(
f"block_alphas is not specified. all alphas are set to {network_alpha} / block_alphasが指定されていません。すべてのalphaは{network_alpha}になります"
)
block_alphas = [network_alpha] * num_total_blocks
# conv_block_dimsとconv_block_alphasを、指定がある場合のみパースする。指定がなければconv_dimとconv_alphaを使う
if conv_block_dims is not None:
conv_block_dims = parse_ints(conv_block_dims)
assert (
len(conv_block_dims) == num_total_blocks
), f"conv_block_dims must have {num_total_blocks} elements / conv_block_dimsは{num_total_blocks}個指定してください"
if conv_block_alphas is not None:
conv_block_alphas = parse_floats(conv_block_alphas)
assert (
len(conv_block_alphas) == num_total_blocks
), f"conv_block_alphas must have {num_total_blocks} elements / conv_block_alphasは{num_total_blocks}個指定してください"
else:
if conv_alpha is None:
conv_alpha = 1.0
print(
f"conv_block_alphas is not specified. all alphas are set to {conv_alpha} / conv_block_alphasが指定されていません。すべてのalphaは{conv_alpha}になります"
)
conv_block_alphas = [conv_alpha] * num_total_blocks
else:
if conv_dim is not None:
print(
f"conv_dim/alpha for all blocks are set to {conv_dim} and {conv_alpha} / すべてのブロックのconv_dimとalphaは{conv_dim}および{conv_alpha}になります"
)
conv_block_dims = [conv_dim] * num_total_blocks
conv_block_alphas = [conv_alpha] * num_total_blocks
else:
conv_block_dims = None
conv_block_alphas = None
return block_dims, block_alphas, conv_block_dims, conv_block_alphas
# 層別学習率用に層ごとの学習率に対する倍率を定義する、外部から呼び出される可能性を考慮しておく
def get_block_lr_weight(
down_lr_weight, mid_lr_weight, up_lr_weight, zero_threshold
) -> Tuple[List[float], List[float], List[float]]:
# パラメータ未指定時は何もせず、今までと同じ動作とする
if up_lr_weight is None and mid_lr_weight is None and down_lr_weight is None:
return None, None, None
max_len = LoRANetwork.NUM_OF_BLOCKS # フルモデル相当でのup,downの層の数
def get_list(name_with_suffix) -> List[float]:
import math
tokens = name_with_suffix.split("+")
name = tokens[0]
base_lr = float(tokens[1]) if len(tokens) > 1 else 0.0
if name == "cosine":
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in reversed(range(max_len))]
elif name == "sine":
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in range(max_len)]
elif name == "linear":
return [i / (max_len - 1) + base_lr for i in range(max_len)]
elif name == "reverse_linear":
return [i / (max_len - 1) + base_lr for i in reversed(range(max_len))]
elif name == "zeros":
return [0.0 + base_lr] * max_len
else:
print(
"Unknown lr_weight argument %s is used. Valid arguments: / 不明なlr_weightの引数 %s が使われました。有効な引数:\n\tcosine, sine, linear, reverse_linear, zeros"
% (name)
)
return None
if type(down_lr_weight) == str:
down_lr_weight = get_list(down_lr_weight)
if type(up_lr_weight) == str:
up_lr_weight = get_list(up_lr_weight)
if (up_lr_weight != None and len(up_lr_weight) > max_len) or (down_lr_weight != None and len(down_lr_weight) > max_len):
print("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len)
print("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len)
up_lr_weight = up_lr_weight[:max_len]
down_lr_weight = down_lr_weight[:max_len]
if (up_lr_weight != None and len(up_lr_weight) < max_len) or (down_lr_weight != None and len(down_lr_weight) < max_len):
print("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len)
print("down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len)
if down_lr_weight != None and len(down_lr_weight) < max_len:
down_lr_weight = down_lr_weight + [1.0] * (max_len - len(down_lr_weight))
if up_lr_weight != None and len(up_lr_weight) < max_len:
up_lr_weight = up_lr_weight + [1.0] * (max_len - len(up_lr_weight))
if (up_lr_weight != None) or (mid_lr_weight != None) or (down_lr_weight != None):
print("apply block learning rate / 階層別学習率を適用します。")
if down_lr_weight != None:
down_lr_weight = [w if w > zero_threshold else 0 for w in down_lr_weight]
print("down_lr_weight (shallower -> deeper, 浅い層->深い層):", down_lr_weight)
else:
print("down_lr_weight: all 1.0, すべて1.0")
if mid_lr_weight != None:
mid_lr_weight = mid_lr_weight if mid_lr_weight > zero_threshold else 0
print("mid_lr_weight:", mid_lr_weight)
else:
print("mid_lr_weight: 1.0")
if up_lr_weight != None:
up_lr_weight = [w if w > zero_threshold else 0 for w in up_lr_weight]
print("up_lr_weight (deeper -> shallower, 深い層->浅い層):", up_lr_weight)
else:
print("up_lr_weight: all 1.0, すべて1.0")
return down_lr_weight, mid_lr_weight, up_lr_weight
# lr_weightが0のblockをblock_dimsから除外する、外部から呼び出す可能性を考慮しておく
def remove_block_dims_and_alphas(
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
):
# set 0 to block dim without learning rate to remove the block
if down_lr_weight != None:
for i, lr in enumerate(down_lr_weight):
if lr == 0:
block_dims[i] = 0
if conv_block_dims is not None:
conv_block_dims[i] = 0
if mid_lr_weight != None:
if mid_lr_weight == 0:
block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
if conv_block_dims is not None:
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
if up_lr_weight != None:
for i, lr in enumerate(up_lr_weight):
if lr == 0:
block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
if conv_block_dims is not None:
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
return block_dims, block_alphas, conv_block_dims, conv_block_alphas
# 外部から呼び出す可能性を考慮しておく
def get_block_index(lora_name: str) -> int:
block_idx = -1 # invalid lora name
m = RE_UPDOWN.search(lora_name)
if m:
g = m.groups()
i = int(g[1])
j = int(g[3])
if g[2] == "resnets":
idx = 3 * i + j
elif g[2] == "attentions":
idx = 3 * i + j
elif g[2] == "upsamplers" or g[2] == "downsamplers":
idx = 3 * i + 2
if g[0] == "down":
block_idx = 1 + idx # 0に該当するLoRAは存在しない
elif g[0] == "up":
block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx
elif "mid_block_" in lora_name:
block_idx = LoRANetwork.NUM_OF_BLOCKS # idx=12
return block_idx
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs):
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping
modules_dim = {}
modules_alpha = {}
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# print(lora_name, value.size(), dim)
# support old LoRA without alpha
for key in modules_dim.keys():
if key not in modules_alpha:
modules_alpha[key] = modules_dim[key]
module_class = LoRAInfModule if for_inference else LoRAModule
network = LoRANetwork(
text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class
)
# block lr
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
return network, weights_sd
class LoRANetwork(torch.nn.Module):
NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
# SDXL: must starts with LORA_PREFIX_TEXT_ENCODER
LORA_PREFIX_TEXT_ENCODER1 = "lora_te1"
LORA_PREFIX_TEXT_ENCODER2 = "lora_te2"
def __init__(
self,
text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
unet,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
block_dims: Optional[List[int]] = None,
block_alphas: Optional[List[float]] = None,
conv_block_dims: Optional[List[int]] = None,
conv_block_alphas: Optional[List[float]] = None,
modules_dim: Optional[Dict[str, int]] = None,
modules_alpha: Optional[Dict[str, int]] = None,
module_class: Type[object] = LoRAModule,
varbose: Optional[bool] = False,
) -> None:
"""
LoRA network: すごく引数が多いが、パターンは以下の通り
1. lora_dimとalphaを指定
2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定
3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない
4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する
5. modules_dimとmodules_alphaを指定 (推論用)
"""
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
if modules_dim is not None:
print(f"create LoRA network from weights")
elif block_dims is not None:
print(f"create LoRA network from block_dims")
print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
print(f"block_dims: {block_dims}")
print(f"block_alphas: {block_alphas}")
if conv_block_dims is not None:
print(f"conv_block_dims: {conv_block_dims}")
print(f"conv_block_alphas: {conv_block_alphas}")
else:
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
if self.conv_lora_dim is not None:
print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
# create module instances
def create_modules(
is_unet: bool,
text_encoder_idx: Optional[int], # None, 1, 2
root_module: torch.nn.Module,
target_replace_modules: List[torch.nn.Module],
) -> List[LoRAModule]:
prefix = (
self.LORA_PREFIX_UNET
if is_unet
else (
self.LORA_PREFIX_TEXT_ENCODER
if text_encoder_idx is None
else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2)
)
)
loras = []
skipped = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
dim = None
alpha = None
if modules_dim is not None:
# モジュール指定あり
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
elif is_unet and block_dims is not None:
# U-Netでblock_dims指定あり
block_idx = get_block_index(lora_name)
if is_linear or is_conv2d_1x1:
dim = block_dims[block_idx]
alpha = block_alphas[block_idx]
elif conv_block_dims is not None:
dim = conv_block_dims[block_idx]
alpha = conv_block_alphas[block_idx]
else:
# 通常、すべて対象とする
if is_linear or is_conv2d_1x1:
dim = self.lora_dim
alpha = self.alpha
elif self.conv_lora_dim is not None:
dim = self.conv_lora_dim
alpha = self.conv_alpha
if dim is None or dim == 0:
# skipした情報を出力
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None or conv_block_dims is not None):
skipped.append(lora_name)
continue
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
)
loras.append(lora)
return loras, skipped
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
print(text_encoders)
# create LoRA for text encoder
# 毎回すべてのモジュールを作るのは無駄なので要検討
self.text_encoder_loras = []
skipped_te = []
for i, text_encoder in enumerate(text_encoders):
if len(text_encoders) > 1:
index = i + 1
print(f"create LoRA for Text Encoder {index}:")
else:
index = None
print(f"create LoRA for Text Encoder:")
print(text_encoder)
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None:
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
skipped = skipped_te + skipped_un
if varbose and len(skipped) > 0:
print(
f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
)
for name in skipped:
print(f"\t{name}")
self.up_lr_weight: List[float] = None
self.down_lr_weight: List[float] = None
self.mid_lr_weight: float = None
self.block_lr = False
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
# マージできるかどうかを返す
def is_mergeable(self):
return True
# TODO refactor to common function with apply_to
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
apply_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
apply_unet = True
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
print(f"weights are merged")
# 層別学習率用に層ごとの学習率に対する倍率を定義する 引数の順番が逆だがとりあえず気にしない
def set_block_lr_weight(
self,
up_lr_weight: List[float] = None,
mid_lr_weight: float = None,
down_lr_weight: List[float] = None,
):
self.block_lr = True
self.down_lr_weight = down_lr_weight
self.mid_lr_weight = mid_lr_weight
self.up_lr_weight = up_lr_weight
def get_lr_weight(self, lora: LoRAModule) -> float:
lr_weight = 1.0
block_idx = get_block_index(lora.lora_name)
if block_idx < 0:
return lr_weight
if block_idx < LoRANetwork.NUM_OF_BLOCKS:
if self.down_lr_weight != None:
lr_weight = self.down_lr_weight[block_idx]
elif block_idx == LoRANetwork.NUM_OF_BLOCKS:
if self.mid_lr_weight != None:
lr_weight = self.mid_lr_weight
elif block_idx > LoRANetwork.NUM_OF_BLOCKS:
if self.up_lr_weight != None:
lr_weight = self.up_lr_weight[block_idx - LoRANetwork.NUM_OF_BLOCKS - 1]
return lr_weight
# 二つのText Encoderに別々の学習率を設定できるようにするといいかも
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
self.requires_grad_(True)
all_params = []
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
if self.text_encoder_loras:
param_data = {"params": enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data["lr"] = text_encoder_lr
all_params.append(param_data)
if self.unet_loras:
if self.block_lr:
# 学習率のグラフをblockごとにしたいので、blockごとにloraを分類
block_idx_to_lora = {}
for lora in self.unet_loras:
idx = get_block_index(lora.lora_name)
if idx not in block_idx_to_lora:
block_idx_to_lora[idx] = []
block_idx_to_lora[idx].append(lora)
# blockごとにパラメータを設定する
for idx, block_loras in block_idx_to_lora.items():
param_data = {"params": enumerate_params(block_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr * self.get_lr_weight(block_loras[0])
elif default_lr is not None:
param_data["lr"] = default_lr * self.get_lr_weight(block_loras[0])
if ("lr" in param_data) and (param_data["lr"] == 0):
continue
all_params.append(param_data)
else:
param_data = {"params": enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
return all_params
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from library import train_util
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
# mask is a tensor with values from 0 to 1
def set_region(self, sub_prompt_index, is_last_network, mask):
if mask.max() == 0:
mask = torch.ones_like(mask)
self.mask = mask
self.sub_prompt_index = sub_prompt_index
self.is_last_network = is_last_network
for lora in self.text_encoder_loras + self.unet_loras:
lora.set_network(self)
def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared):
self.batch_size = batch_size
self.num_sub_prompts = num_sub_prompts
self.current_size = (height, width)
self.shared = shared
# create masks
mask = self.mask
mask_dic = {}
mask = mask.unsqueeze(0).unsqueeze(1) # b(1),c(1),h,w
ref_weight = self.text_encoder_loras[0].lora_down.weight if self.text_encoder_loras else self.unet_loras[0].lora_down.weight
dtype = ref_weight.dtype
device = ref_weight.device
def resize_add(mh, mw):
# print(mh, mw, mh * mw)
m = torch.nn.functional.interpolate(mask, (mh, mw), mode="bilinear") # doesn't work in bf16
m = m.to(device, dtype=dtype)
mask_dic[mh * mw] = m
h = height // 8
w = width // 8
for _ in range(4):
resize_add(h, w)
if h % 2 == 1 or w % 2 == 1: # add extra shape if h/w is not divisible by 2
resize_add(h + h % 2, w + w % 2)
h = (h + 1) // 2
w = (w + 1) // 2
self.mask_dic = mask_dic
def backup_weights(self):
# 重みのバックアップを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not hasattr(org_module, "_lora_org_weight"):
sd = org_module.state_dict()
org_module._lora_org_weight = sd["weight"].detach().clone()
org_module._lora_restored = True
def restore_weights(self):
# 重みのリストアを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not org_module._lora_restored:
sd = org_module.state_dict()
sd["weight"] = org_module._lora_org_weight
org_module.load_state_dict(sd)
org_module._lora_restored = True
def pre_calculation(self):
# 事前計算を行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
sd = org_module.state_dict()
org_weight = sd["weight"]
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
sd["weight"] = org_weight + lora_weight
assert sd["weight"].shape == org_weight.shape
org_module.load_state_dict(sd)
org_module._lora_restored = False
lora.enabled = False
def apply_max_norm_regularization(self, max_norm_value, device):
downkeys = []
upkeys = []
alphakeys = []
norms = []
keys_scaled = 0
state_dict = self.state_dict()
for key in state_dict.keys():
if "lora_down" in key and "weight" in key:
downkeys.append(key)
upkeys.append(key.replace("lora_down", "lora_up"))
alphakeys.append(key.replace("lora_down.weight", "alpha"))
for i in range(len(downkeys)):
down = state_dict[downkeys[i]].to(device)
up = state_dict[upkeys[i]].to(device)
alpha = state_dict[alphakeys[i]].to(device)
dim = down.shape[0]
scale = alpha / dim
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown *= scale
norm = updown.norm().clamp(min=max_norm_value / 2)
desired = torch.clamp(norm, max=max_norm_value)
ratio = desired.cpu() / norm.cpu()
sqrt_ratio = ratio**0.5
if ratio != 1:
keys_scaled += 1
state_dict[upkeys[i]] *= sqrt_ratio
state_dict[downkeys[i]] *= sqrt_ratio
scalednorm = updown.norm() * ratio
norms.append(scalednorm.item())
return keys_scaled, sum(norms) / len(norms), max(norms)