Spaces:
Build error
Build error
""" | |
@Date: 2021/07/18 | |
@description: | |
""" | |
import os | |
import models | |
import torch.distributed as dist | |
import torch | |
from torch.nn import init | |
from torch.optim import lr_scheduler | |
from utils.time_watch import TimeWatch | |
from models.other.optimizer import build_optimizer | |
from models.other.criterion import build_criterion | |
def build_model(config, logger): | |
name = config.MODEL.NAME | |
w = TimeWatch(f"Build model: {name}", logger) | |
ddp = config.WORLD_SIZE > 1 | |
if ddp: | |
logger.info(f"use ddp") | |
dist.init_process_group("nccl", init_method='tcp://127.0.0.1:23456', rank=config.LOCAL_RANK, | |
world_size=config.WORLD_SIZE) | |
device = config.TRAIN.DEVICE | |
logger.info(f"Creating model: {name} to device:{device}, args:{config.MODEL.ARGS[0]}") | |
net = getattr(models, name) | |
ckpt_dir = os.path.abspath(os.path.join(config.CKPT.DIR, os.pardir)) if config.DEBUG else config.CKPT.DIR | |
if len(config.MODEL.ARGS) != 0: | |
model = net(ckpt_dir=ckpt_dir, **config.MODEL.ARGS[0]) | |
else: | |
model = net(ckpt_dir=ckpt_dir) | |
logger.info(f'model dropout: {model.dropout_d}') | |
model = model.to(device) | |
optimizer = None | |
scheduler = None | |
if config.MODE == 'train': | |
optimizer = build_optimizer(config, model, logger) | |
config.defrost() | |
config.TRAIN.START_EPOCH = model.load(device, logger, optimizer, best=config.MODE != 'train' or not config.TRAIN.RESUME_LAST) | |
config.freeze() | |
if config.MODE == 'train' and len(config.MODEL.FINE_TUNE) > 0: | |
for param in model.parameters(): | |
param.requires_grad = False | |
for layer in config.MODEL.FINE_TUNE: | |
logger.info(f'Fine-tune: {layer}') | |
getattr(model, layer).requires_grad_(requires_grad=True) | |
getattr(model, layer).reset_parameters() | |
model.show_parameter_number(logger) | |
if config.MODE == 'train': | |
if len(config.TRAIN.LR_SCHEDULER.NAME) > 0: | |
if 'last_epoch' not in config.TRAIN.LR_SCHEDULER.ARGS[0].keys(): | |
config.TRAIN.LR_SCHEDULER.ARGS[0]['last_epoch'] = config.TRAIN.START_EPOCH - 1 | |
scheduler = getattr(lr_scheduler, config.TRAIN.LR_SCHEDULER.NAME)(optimizer=optimizer, | |
**config.TRAIN.LR_SCHEDULER.ARGS[0]) | |
logger.info(f"Use scheduler: name:{config.TRAIN.LR_SCHEDULER.NAME} args: {config.TRAIN.LR_SCHEDULER.ARGS[0]}") | |
logger.info(f"Current scheduler last lr: {scheduler.get_last_lr()}") | |
else: | |
scheduler = None | |
if config.AMP_OPT_LEVEL != "O0" and 'cuda' in device: | |
import apex | |
logger.info(f"use amp:{config.AMP_OPT_LEVEL}") | |
model, optimizer = apex.amp.initialize(model, optimizer, opt_level=config.AMP_OPT_LEVEL, verbosity=0) | |
if ddp: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.TRAIN.DEVICE], | |
broadcast_buffers=True) # use rank:0 bn | |
criterion = build_criterion(config, logger) | |
if optimizer is not None: | |
logger.info(f"Finally lr: {optimizer.param_groups[0]['lr']}") | |
return model, optimizer, criterion, scheduler | |