Spaces:
Build error
Build error
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from einops import rearrange | |
class PreNorm(nn.Module): | |
def __init__(self, dim, fn): | |
super().__init__() | |
self.norm = nn.LayerNorm(dim) | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
return self.fn(self.norm(x), **kwargs) | |
class GELU(nn.Module): | |
def forward(self, input): | |
return F.gelu(input) | |
class Attend(nn.Module): | |
def __init__(self, dim=None): | |
super().__init__() | |
self.dim = dim | |
def forward(self, input): | |
return F.softmax(input, dim=self.dim, dtype=input.dtype) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, hidden_dim, dropout=0.): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(dim, hidden_dim), | |
GELU(), | |
nn.Dropout(dropout), | |
nn.Linear(hidden_dim, dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Attention(nn.Module): | |
def __init__(self, dim, heads=8, dim_head=64, dropout=0.): | |
super().__init__() | |
inner_dim = dim_head * heads | |
project_out = not (heads == 1 and dim_head == dim) | |
self.heads = heads | |
self.scale = dim_head ** -0.5 | |
self.attend = Attend(dim=-1) | |
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, dim), | |
nn.Dropout(dropout) | |
) if project_out else nn.Identity() | |
def forward(self, x): | |
b, n, _, h = *x.shape, self.heads | |
qkv = self.to_qkv(x).chunk(3, dim=-1) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv) | |
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale | |
attn = self.attend(dots) | |
out = einsum('b h i j, b h j d -> b h i d', attn, v) | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
return self.to_out(out) | |
class Conv(nn.Module): | |
def __init__(self, dim, dropout=0.): | |
super().__init__() | |
self.dim = dim | |
self.net = nn.Sequential( | |
nn.Conv1d(dim, dim, kernel_size=3, stride=1, padding=0), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
x = x.transpose(1, 2) | |
x = torch.cat([x[..., -1:], x, x[..., :1]], dim=-1) | |
x = self.net(x) | |
return x.transpose(1, 2) | |
class ConvTransformer(nn.Module): | |
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.): | |
super().__init__() | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append(nn.ModuleList([ | |
PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)), | |
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)), | |
PreNorm(dim, Conv(dim, dropout=dropout)) | |
])) | |
def forward(self, x): | |
for attn, ff, cov in self.layers: | |
x = attn(x) + x | |
x = ff(x) + x | |
x = cov(x) + x | |
return x | |
if __name__ == '__main__': | |
token_dim = 1024 | |
toke_len = 256 | |
transformer = ConvTransformer(dim=token_dim, | |
depth=6, | |
heads=16, | |
dim_head=64, | |
mlp_dim=2048, | |
dropout=0.1) | |
total = sum(p.numel() for p in transformer.parameters()) | |
trainable = sum(p.numel() for p in transformer.parameters() if p.requires_grad) | |
print('parameter total:{:,}, trainable:{:,}'.format(total, trainable)) | |
input = torch.randn(1, toke_len, token_dim) | |
output = transformer(input) | |
print(output.shape) | |