Spaces:
Build error
Build error
""" | |
@author: | |
@Date: 2021/07/17 | |
@description: Use the feature extractor proposed by HorizonNet | |
""" | |
import numpy as np | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.models as models | |
import functools | |
from models.base_model import BaseModule | |
ENCODER_RESNET = [ | |
'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', | |
'resnext50_32x4d', 'resnext101_32x8d' | |
] | |
ENCODER_DENSENET = [ | |
'densenet121', 'densenet169', 'densenet161', 'densenet201' | |
] | |
def lr_pad(x, padding=1): | |
''' Pad left/right-most to each other instead of zero padding ''' | |
return torch.cat([x[..., -padding:], x, x[..., :padding]], dim=3) | |
class LR_PAD(nn.Module): | |
''' Pad left/right-most to each other instead of zero padding ''' | |
def __init__(self, padding=1): | |
super(LR_PAD, self).__init__() | |
self.padding = padding | |
def forward(self, x): | |
return lr_pad(x, self.padding) | |
def wrap_lr_pad(net): | |
for name, m in net.named_modules(): | |
if not isinstance(m, nn.Conv2d): | |
continue | |
if m.padding[1] == 0: | |
continue | |
w_pad = int(m.padding[1]) | |
m.padding = (m.padding[0], 0) # weight padding is 0, LR_PAD then use valid padding will keep dim of weight | |
names = name.split('.') | |
root = functools.reduce(lambda o, i: getattr(o, i), [net] + names[:-1]) | |
setattr( | |
root, names[-1], | |
nn.Sequential(LR_PAD(w_pad), m) | |
) | |
''' | |
Encoder | |
''' | |
class Resnet(nn.Module): | |
def __init__(self, backbone='resnet50', pretrained=True): | |
super(Resnet, self).__init__() | |
assert backbone in ENCODER_RESNET | |
self.encoder = getattr(models, backbone)(pretrained=pretrained) | |
del self.encoder.fc, self.encoder.avgpool | |
def forward(self, x): | |
features = [] | |
x = self.encoder.conv1(x) | |
x = self.encoder.bn1(x) | |
x = self.encoder.relu(x) | |
x = self.encoder.maxpool(x) | |
x = self.encoder.layer1(x) | |
features.append(x) # 1/4 | |
x = self.encoder.layer2(x) | |
features.append(x) # 1/8 | |
x = self.encoder.layer3(x) | |
features.append(x) # 1/16 | |
x = self.encoder.layer4(x) | |
features.append(x) # 1/32 | |
return features | |
def list_blocks(self): | |
lst = [m for m in self.encoder.children()] | |
block0 = lst[:4] | |
block1 = lst[4:5] | |
block2 = lst[5:6] | |
block3 = lst[6:7] | |
block4 = lst[7:8] | |
return block0, block1, block2, block3, block4 | |
class Densenet(nn.Module): | |
def __init__(self, backbone='densenet169', pretrained=True): | |
super(Densenet, self).__init__() | |
assert backbone in ENCODER_DENSENET | |
self.encoder = getattr(models, backbone)(pretrained=pretrained) | |
self.final_relu = nn.ReLU(inplace=True) | |
del self.encoder.classifier | |
def forward(self, x): | |
lst = [] | |
for m in self.encoder.features.children(): | |
x = m(x) | |
lst.append(x) | |
features = [lst[4], lst[6], lst[8], self.final_relu(lst[11])] | |
return features | |
def list_blocks(self): | |
lst = [m for m in self.encoder.features.children()] | |
block0 = lst[:4] | |
block1 = lst[4:6] | |
block2 = lst[6:8] | |
block3 = lst[8:10] | |
block4 = lst[10:] | |
return block0, block1, block2, block3, block4 | |
''' | |
Decoder | |
''' | |
class ConvCompressH(nn.Module): | |
''' Reduce feature height by factor of two ''' | |
def __init__(self, in_c, out_c, ks=3): | |
super(ConvCompressH, self).__init__() | |
assert ks % 2 == 1 | |
self.layers = nn.Sequential( | |
nn.Conv2d(in_c, out_c, kernel_size=ks, stride=(2, 1), padding=ks // 2), | |
nn.BatchNorm2d(out_c), | |
nn.ReLU(inplace=True), | |
) | |
def forward(self, x): | |
return self.layers(x) | |
class GlobalHeightConv(nn.Module): | |
def __init__(self, in_c, out_c): | |
super(GlobalHeightConv, self).__init__() | |
self.layer = nn.Sequential( | |
ConvCompressH(in_c, in_c // 2), | |
ConvCompressH(in_c // 2, in_c // 2), | |
ConvCompressH(in_c // 2, in_c // 4), | |
ConvCompressH(in_c // 4, out_c), | |
) | |
def forward(self, x, out_w): | |
x = self.layer(x) | |
factor = out_w // x.shape[3] | |
x = torch.cat([x[..., -1:], x, x[..., :1]], 3) # 先补左右,相当于warp模式,然后进行插值 | |
d_type = x.dtype | |
x = F.interpolate(x, size=(x.shape[2], out_w + 2 * factor), mode='bilinear', align_corners=False) | |
# if x.dtype != d_type: | |
# x = x.type(d_type) | |
x = x[..., factor:-factor] | |
return x | |
class GlobalHeightStage(nn.Module): | |
def __init__(self, c1, c2, c3, c4, out_scale=8): | |
''' Process 4 blocks from encoder to single multiscale features ''' | |
super(GlobalHeightStage, self).__init__() | |
self.cs = c1, c2, c3, c4 | |
self.out_scale = out_scale | |
self.ghc_lst = nn.ModuleList([ | |
GlobalHeightConv(c1, c1 // out_scale), | |
GlobalHeightConv(c2, c2 // out_scale), | |
GlobalHeightConv(c3, c3 // out_scale), | |
GlobalHeightConv(c4, c4 // out_scale), | |
]) | |
def forward(self, conv_list, out_w): | |
assert len(conv_list) == 4 | |
bs = conv_list[0].shape[0] | |
feature = torch.cat([ | |
f(x, out_w).reshape(bs, -1, out_w) | |
for f, x, out_c in zip(self.ghc_lst, conv_list, self.cs) | |
], dim=1) | |
# conv_list: | |
# 0 [b, 256(d), 128(h), 256(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 32(d) 8(h) 256(w)] | |
# 1 [b, 512(d), 64(h), 128(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 64(d) 4(h) 128(w)] | |
# 2 [b, 1024(d), 32(h), 64(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 128(d) 2(h) 64(w)] | |
# 3 [b, 2048(d), 16(h), 32(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 256(d) 1(h) 32(w)] | |
# 0 ->(unsampledW256} : w=256)-> [b 32(d) 8(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)] | |
# 1 ->(unsampledW256} : w=256)-> [b 64(d) 4(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)] | |
# 2 ->(unsampledW256} : w=256)-> [b 128(d) 2(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)] | |
# 3 ->(unsampledW256} : w=256)-> [b 256(d) 1(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)] | |
# 0 --\ | |
# 1 -- \ | |
# ---- cat [b 1024(d) 1(h) 256(w)] | |
# 2 -- / | |
# 3 --/ | |
return feature # [b 1024(d) 256(w)] | |
class HorizonNetFeatureExtractor(nn.Module): | |
x_mean = torch.FloatTensor(np.array([0.485, 0.456, 0.406])[None, :, None, None]) | |
x_std = torch.FloatTensor(np.array([0.229, 0.224, 0.225])[None, :, None, None]) | |
def __init__(self, backbone='resnet50'): | |
super(HorizonNetFeatureExtractor, self).__init__() | |
self.out_scale = 8 | |
self.step_cols = 4 | |
# Encoder | |
if backbone.startswith('res'): | |
self.feature_extractor = Resnet(backbone, pretrained=True) | |
elif backbone.startswith('dense'): | |
self.feature_extractor = Densenet(backbone, pretrained=True) | |
else: | |
raise NotImplementedError() | |
# Inference channels number from each block of the encoder | |
with torch.no_grad(): | |
dummy = torch.zeros(1, 3, 512, 1024) | |
c1, c2, c3, c4 = [b.shape[1] for b in self.feature_extractor(dummy)] | |
self.c_last = (c1 * 8 + c2 * 4 + c3 * 2 + c4 * 1) // self.out_scale | |
# Convert features from 4 blocks of the encoder into B x C x 1 x W' | |
self.reduce_height_module = GlobalHeightStage(c1, c2, c3, c4, self.out_scale) | |
self.x_mean.requires_grad = False | |
self.x_std.requires_grad = False | |
wrap_lr_pad(self) | |
def _prepare_x(self, x): | |
x = x.clone() | |
if self.x_mean.device != x.device: | |
self.x_mean = self.x_mean.to(x.device) | |
self.x_std = self.x_std.to(x.device) | |
x[:, :3] = (x[:, :3] - self.x_mean) / self.x_std | |
return x | |
def forward(self, x): | |
# x [b 3 512 1024] | |
x = self._prepare_x(x) # [b 3 512 1024] | |
conv_list = self.feature_extractor(x) | |
# conv_list: | |
# 0 [b, 256(d), 128(h), 256(w)] | |
# 1 [b, 512(d), 64(h), 128(w)] | |
# 2 [b, 1024(d), 32(h), 64(w)] | |
# 3 [b, 2048(d), 16(h), 32(w)] | |
x = self.reduce_height_module(conv_list, x.shape[3] // self.step_cols) # [b 1024(d) 1(h) 256(w)] | |
# After reduce_Height_module, h becomes 1, the information is compressed to d, | |
# and w contains different resolutions | |
# 0 [b, 256(d), 128(h), 256(w)] -> [b, 256/8(d) * 128/16(h') = 256(d), 1(h) 256(w)] | |
# 1 [b, 512(d), 64(h), 128(w)] -> [b, 512/8(d) * 64/16(h') = 256(d), 1(h) 256(w)] | |
# 2 [b, 1024(d), 32(h), 64(w)] -> [b, 1024/8(d) * 32/16(h') = 256(d), 1(h) 256(w)] | |
# 3 [b, 2048(d), 16(h), 32(w)] -> [b, 2048/8(d) * 16/16(h') = 256(d), 1(h) 256(w)] | |
return x # [b 1024(d) 1(h) 256(w)] | |
if __name__ == '__main__': | |
from PIL import Image | |
extractor = HorizonNetFeatureExtractor() | |
img = np.array(Image.open("../../src/demo.png")).transpose((2, 0, 1)) | |
input = torch.Tensor([img]) # 1 3 512 1024 | |
feature = extractor(input) | |
print(feature.shape) # 1, 1024, 256 | 1024 = (out_c_0*h_0 +... + out_c_3*h_3) = 256 * 4 | |