Spaces:
Build error
Build error
from models.modules.transformer_modules import * | |
class Swin_Transformer(nn.Module): | |
def __init__(self, dim, depth, heads, win_size, dim_head, mlp_dim, | |
dropout=0., patch_num=None, ape=None, rpe=None, rpe_pos=1): | |
super().__init__() | |
self.absolute_pos_embed = None if patch_num is None or ape is None else AbsolutePosition(dim, dropout, | |
patch_num, ape) | |
self.pos_dropout = nn.Dropout(dropout) | |
self.layers = nn.ModuleList([]) | |
for i in range(depth): | |
self.layers.append(nn.ModuleList([ | |
PreNorm(dim, WinAttention(dim, win_size=win_size, shift=0 if (i % 2 == 0) else win_size // 2, | |
heads=heads, dim_head=dim_head, dropout=dropout, rpe=rpe, rpe_pos=rpe_pos)), | |
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)), | |
])) | |
def forward(self, x): | |
if self.absolute_pos_embed is not None: | |
x = self.absolute_pos_embed(x) | |
x = self.pos_dropout(x) | |
for attn, ff in self.layers: | |
x = attn(x) + x | |
x = ff(x) + x | |
return x | |
if __name__ == '__main__': | |
token_dim = 1024 | |
toke_len = 256 | |
transformer = Swin_Transformer(dim=token_dim, | |
depth=6, | |
heads=16, | |
win_size=8, | |
dim_head=64, | |
mlp_dim=2048, | |
dropout=0.1) | |
input = torch.randn(1, toke_len, token_dim) | |
output = transformer(input) | |
print(output.shape) | |