File size: 7,607 Bytes
e79b770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
1. read text of dataset
2. text -> IPA by GruutPhonemizer
3. save out a *.npy dict for all text
my_dict = {"utt_id1": text1, "utt_id2": text2}
np.save(output_filename, my_dict)
my_dict = np.load(output_filename, allow_pickle=True).item()
"""
import argparse
import os
from concurrent.futures import ThreadPoolExecutor
from operator import itemgetter
from pathlib import Path
from typing import List

import numpy as np
import tqdm
from AR.text_processing.phonemizer import GruutPhonemizer


def read_txt(txt_file):
    utt_name = txt_file.stem
    utt_id = utt_name.split('.')[0]
    try:
        with open(txt_file, 'r') as file:
            txt = file.readline()
        record = {"utt_id": utt_id, "txt": txt}
    except Exception:
        print("occur Exception")
        traceback.print_exc()
        return None
    return record


def read_txts(txt_files: List[Path], nprocs: int=1):
    if nprocs == 1:
        results = []
        for txt_file in tqdm.tqdm(txt_files, total=len(txt_files)):
            record = read_txt(txt_file=txt_file)
            if record:
                results.append(record)
    else:
        with ThreadPoolExecutor(nprocs) as pool:
            futures = []
            with tqdm.tqdm(total=len(txt_files)) as progress:
                for txt_file in txt_files:
                    future = pool.submit(read_txt, txt_file)
                    future.add_done_callback(lambda p: progress.update())
                    futures.append(future)

                results = []
                for ft in futures:
                    record = ft.result()
                    if record:
                        results.append(record)

    results.sort(key=itemgetter("utt_id"))
    return_list = []
    for item in results:
        return_list.append((item["utt_id"], item["txt"]))
    return return_list


def process_sentence(item, phonemizer):
    utt_id, text = item
    try:
        phonemes = phonemizer.phonemize(text, espeak=False)
        record = {"utt_id": utt_id, "phonemes": phonemes}
    except Exception:
        print("occur Exception")
        traceback.print_exc()
        return None
    return record


def process_sentences(items, phonemizer, output_dir, nprocs: int=1):
    if nprocs == 1:
        results = []
        for item in tqdm.tqdm(items, total=len(items)):
            record = process_sentence(item=item, phonemizer=phonemizer)
            if record:
                results.append(record)
    else:
        with ThreadPoolExecutor(nprocs) as pool:
            futures = []
            with tqdm.tqdm(total=len(items)) as progress:
                for item in items:
                    future = pool.submit(process_sentence, item, phonemizer)
                    future.add_done_callback(lambda p: progress.update())
                    futures.append(future)

                results = []
                for ft in futures:
                    record = ft.result()
                    if record:
                        results.append(record)
    results.sort(key=itemgetter("utt_id"))
    npy_dict = {}
    for item in results:
        utt_id = item["utt_id"]
        phonemes = item["phonemes"]
        npy_dict[utt_id] = phonemes
    filename = output_dir / 'phonemes.npy'
    np.save(filename, npy_dict)
    print(f"npy file '{filename}' write down")


def main():
    # parse config and args
    parser = argparse.ArgumentParser(description="Get phones for datasets")

    parser.add_argument(
        "--dataset",
        default="ljspeech",
        type=str,
        help="name of dataset, should in {ljspeech, libritts} now")

    parser.add_argument(
        "--data_dir", default=None, type=str, help="directory to dataset.")

    parser.add_argument(
        "--dump_dir",
        type=str,
        required=True,
        help="directory to dump feature files.")
    parser.add_argument(
        "--num-cpu", type=int, default=1, help="number of process.")

    args = parser.parse_args()

    data_dir = Path(args.data_dir).expanduser()
    dump_dir = Path(args.dump_dir).expanduser()
    # use absolute path
    dump_dir = dump_dir.resolve()
    dump_dir.mkdir(parents=True, exist_ok=True)

    assert data_dir.is_dir()

    if args.dataset == "ljspeech":
        data_dict = {}
        text_path = data_dir / 'metadata.csv'
        with open(text_path, 'r') as rf:
            for line in rf:
                line_list = line.strip().split('|')
                utt_id = line_list[0]
                raw_text = line_list[-1]
                data_dict[utt_id] = raw_text

        sorted_dict = sorted(data_dict.items())

        num_train = 12900
        num_dev = 100
        # (utt_id, txt)
        train_txts = sorted_dict[:num_train]
        dev_txts = sorted_dict[num_train:num_train + num_dev]
        test_txts = sorted_dict[num_train + num_dev:]

    elif args.dataset == "libritts":
        '''
        we use train-clean-100、train-clean-360、train-other-500 here 
        and split dev and test from them, don't use test-* and dev-* cause the speakers are disjoint
        the file structure is LibriTTS_R/train-clean-100/spkid/*/*.wav
        there are about 2311 in these subsets, we split 1 dev and 1 test wav out from each speaker
        '''
        txt_files = []
        train_txt_files = []
        dev_txt_files = []
        test_txt_files = []
        sub_num_dev = 1
        for sub_dataset_name in {
                "train-clean-100", "train-clean-360", "train-other-500"
        }:
            sub_dataset_dir = data_dir / sub_dataset_name
            # filter out hidden files
            speaker_list = [
                file for file in os.listdir(sub_dataset_dir)
                if not file.startswith('.')
            ]
            for speaker in speaker_list:
                txt_files = sorted(
                    list((sub_dataset_dir / speaker).rglob(
                        "*/*.normalized.txt")))
                # filter out ._*.wav
                txt_files = [
                    file for file in txt_files if not file.name.startswith('._')
                ]
                train_txt_files += txt_files[:-sub_num_dev * 2]
                dev_txt_files += txt_files[-sub_num_dev * 2:-sub_num_dev]
                test_txt_files += txt_files[-sub_num_dev:]
        print("len(train_txt_files):", len(train_txt_files))
        print("len(dev_txt_files):", len(dev_txt_files))
        print("len(test_txt_files):", len(test_txt_files))

        train_txts = read_txts(train_txt_files)
        dev_txts = read_txts(dev_txt_files)
        test_txts = read_txts(test_txt_files)

    else:
        print("dataset should in {ljspeech, libritts} now!")

    train_dump_dir = dump_dir / "train"
    train_dump_dir.mkdir(parents=True, exist_ok=True)
    dev_dump_dir = dump_dir / "dev"
    dev_dump_dir.mkdir(parents=True, exist_ok=True)
    test_dump_dir = dump_dir / "test"
    test_dump_dir.mkdir(parents=True, exist_ok=True)

    phonemizer = GruutPhonemizer(language='en-us')

    # process for the 3 sections
    if train_txts:
        process_sentences(
            items=train_txts,
            output_dir=train_dump_dir,
            phonemizer=phonemizer,
            nprocs=args.num_cpu)
    if dev_txts:
        process_sentences(
            items=dev_txts,
            output_dir=dev_dump_dir,
            phonemizer=phonemizer,
            nprocs=args.num_cpu)
    if test_txts:
        process_sentences(
            items=test_txts,
            output_dir=test_dump_dir,
            phonemizer=phonemizer,
            nprocs=args.num_cpu)


if __name__ == "__main__":
    main()