File size: 6,548 Bytes
e79b770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""
1. read text of dataset, for LibriLight read txt_*.npy -> 需要整理成 list(utt_id, txt) 的形式
2. text -> IPA by GruutPhonemizer
3. save out a *.npy dict for all text
4. LibriLight 每个 split 分开处理
my_dict = {"utt_id1": text1, "utt_id2": text2}
np.save(output_filename, my_dict)
my_dict = np.load(output_filename, allow_pickle=True).item()
"""
import argparse
import os
import time
import traceback
from concurrent.futures import ThreadPoolExecutor
from operator import itemgetter
from pathlib import Path

import numpy as np
import tqdm
from AR.text_processing.phonemizer import GruutPhonemizer
from soundstorm.utils import check_txt_file


def read_txts(txt_file: Path, nprocs: int=1):
    '''
    txt_file: path of npy dict, {"utt_id1": text1, "utt_id2": text2}
    '''
    txt_dict = np.load(txt_file, allow_pickle=True).item()
    #[(utt_id, txt), ...]
    return_list = list(txt_dict.items())
    return return_list


def process_sentence(item, phonemizer, output_dir):
    utt_id, text = item
    phonemes_dir = output_dir / "phonemes"
    phonemes_dir.mkdir(parents=True, exist_ok=True)
    phonemes_path = phonemes_dir / (utt_id + ".txt")
    try:
        if os.path.exists(phonemes_path) and check_txt_file(phonemes_path):
            # print(phonemes_path, 'exits!')
            pass
        else:
            phonemes = phonemizer.phonemize(text, espeak=False)
            with open(phonemes_path, 'w') as f:
                f.write(phonemes)
        record = {"utt_id": utt_id, "phonemes_path": phonemes_path}
    except Exception:
        print("occur Exception")
        traceback.print_exc()
        return None
    return record


def process_sentences(args, items, phonemizer, output_dir, nprocs: int=1):
    print("nprocs:", nprocs)
    if nprocs == 1:
        results = []
        for item in tqdm.tqdm(items, total=len(items)):
            record = process_sentence(
                item=item, phonemizer=phonemizer, output_dir=output_dir)
            if record:
                results.append(record)
    else:
        with ThreadPoolExecutor(nprocs) as pool:
            futures = []
            with tqdm.tqdm(total=len(items)) as progress:
                for item in items:
                    future = pool.submit(process_sentence, item, phonemizer,
                                         output_dir)
                    future.add_done_callback(lambda p: progress.update())
                    futures.append(future)

                results = []
                for ft in futures:
                    record = ft.result()
                    if record:
                        results.append(record)

    results.sort(key=itemgetter("utt_id"))

    npy_dict = {}
    print(f"start to save {args.rank}_{args.nshard}.npy ...")
    save_start_time = time.time()
    for item in tqdm.tqdm(results, total=len(results), colour='green'):
        # 这里加 try, 因为 txt 文件可能损坏
        try:
            utt_id = item["utt_id"]
            phonemes = check_txt_file(item["phonemes_path"])
            if phonemes is not False:
                npy_dict[utt_id] = phonemes
            else:
                print(f'phonemes of {utt_id} is False')
        except Exception:
            print(f"{utt_id} occur Exception")
            traceback.print_exc()
            continue

    filename = output_dir / f'phonemes_{args.rank}_{args.nshard}.npy'
    np.save(filename, npy_dict)
    print(f"npy file '{filename}' write down")
    print('time of save stage:', time.time() - save_start_time)


def main():
    # parse config and args
    parser = argparse.ArgumentParser(
        description="Get phones for LibriLight dataset from txt_*.npy")

    parser.add_argument(
        "--dump_dir",
        type=str,
        required=True,
        help="directory to dump feature files.")
    parser.add_argument(
        "--num-cpu", type=int, default=1, help="number of process.")

    parser.add_argument(
        '--train_txt_dir',
        type=str,
        default='dump/small/train/',
        help='dir of train txt files')
    parser.add_argument(
        '--dev_txt_dir',
        type=str,
        default='dump/small/dev/',
        help='dir of dev txt files')
    parser.add_argument(
        '--test_txt_dir',
        type=str,
        default='dump/small/test/',
        help='dir of test txt files')

    parser.add_argument(
        "--sub_dataset",
        default="small",
        type=str,
        help="name of sub dataset of LibriLight",
        choices=['small', 'medium', 'large', 'duplicate'], )
    parser.add_argument("--nshard", type=int, default=3)
    parser.add_argument("--rank", type=int, default=0)

    args = parser.parse_args()
    print(f"nshard: {args.nshard}, rank: {args.rank}")

    train_txt_dir = Path(args.train_txt_dir)
    dev_txt_dir = Path(args.dev_txt_dir)
    test_txt_dir = Path(args.test_txt_dir)

    dump_dir = Path(args.dump_dir).expanduser()
    # use absolute path
    dump_dir = dump_dir.resolve()
    dump_dir.mkdir(parents=True, exist_ok=True)

    train_txt_file = train_txt_dir / f'txt_{args.rank}_{args.nshard}.npy'
    dev_txt_file = dev_txt_dir / f'txt_{args.rank}_{args.nshard}.npy'
    test_txt_file = test_txt_dir / f'txt_{args.rank}_{args.nshard}.npy'

    train_txts = read_txts(train_txt_file)
    dev_txts = read_txts(dev_txt_file)
    test_txts = read_txts(test_txt_file)

    sub_dataset_dump_dir = dump_dir / args.sub_dataset
    sub_dataset_dump_dir.mkdir(parents=True, exist_ok=True)
    train_dump_dir = sub_dataset_dump_dir / "train"
    train_dump_dir.mkdir(parents=True, exist_ok=True)
    dev_dump_dir = sub_dataset_dump_dir / "dev"
    dev_dump_dir.mkdir(parents=True, exist_ok=True)
    test_dump_dir = sub_dataset_dump_dir / "test"
    test_dump_dir.mkdir(parents=True, exist_ok=True)
    phonemizer = GruutPhonemizer(language='en-us')

    # process for the 3 sections
    if train_txts:
        process_sentences(
            args=args,
            items=train_txts,
            output_dir=train_dump_dir,
            phonemizer=phonemizer,
            nprocs=args.num_cpu)
    if dev_txts:
        process_sentences(
            args=args,
            items=dev_txts,
            output_dir=dev_dump_dir,
            phonemizer=phonemizer,
            nprocs=args.num_cpu)
    if test_txts:
        process_sentences(
            args=args,
            items=test_txts,
            output_dir=test_dump_dir,
            phonemizer=phonemizer,
            nprocs=args.num_cpu)


if __name__ == "__main__":
    main()