File size: 12,507 Bytes
e79b770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
import copy
import numbers
from functools import partial
from typing import Any
from typing import Callable
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union

import torch
from AR.modules.activation import MultiheadAttention
from AR.modules.scaling import BalancedDoubleSwish
from torch import nn
from torch import Tensor
from torch.nn import functional as F

_shape_t = Union[int, List[int], torch.Size]


class LayerNorm(nn.Module):
    __constants__ = ["normalized_shape", "eps", "elementwise_affine"]
    normalized_shape: Tuple[int, ...]
    eps: float
    elementwise_affine: bool

    def __init__(
            self,
            normalized_shape: _shape_t,
            eps: float=1e-5,
            elementwise_affine: bool=True,
            device=None,
            dtype=None, ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            # mypy error: incompatible types in assignment
            normalized_shape = (normalized_shape, )  # type: ignore[assignment]
        self.normalized_shape = tuple(
            normalized_shape)  # type: ignore[arg-type]
        self.eps = eps
        self.elementwise_affine = elementwise_affine
        if self.elementwise_affine:
            self.weight = nn.Parameter(
                torch.empty(self.normalized_shape, **factory_kwargs))
            self.bias = nn.Parameter(
                torch.empty(self.normalized_shape, **factory_kwargs))
        else:
            self.register_parameter("weight", None)
            self.register_parameter("bias", None)

        self.reset_parameters()

    def reset_parameters(self) -> None:
        if self.elementwise_affine:
            nn.init.ones_(self.weight)
            nn.init.zeros_(self.bias)

    def forward(self, input: Tensor, embedding: Any=None) -> Tensor:
        if isinstance(input, tuple):
            input, embedding = input
            return (F.layer_norm(
                input,
                self.normalized_shape,
                self.weight,
                self.bias,
                self.eps, ), embedding, )

        assert embedding is None
        return F.layer_norm(input, self.normalized_shape, self.weight,
                            self.bias, self.eps)

    def extra_repr(self) -> str:
        return (
            "{normalized_shape}, eps={eps}, "
            "elementwise_affine={elementwise_affine}".format(**self.__dict__))


class IdentityNorm(nn.Module):
    def __init__(
            self,
            d_model: int,
            eps: float=1e-5,
            device=None,
            dtype=None, ) -> None:
        super(IdentityNorm, self).__init__()

    def forward(self, input: Tensor, embedding: Any=None) -> Tensor:
        if isinstance(input, tuple):
            return input

        assert embedding is None
        return input


class TransformerEncoder(nn.Module):
    r"""TransformerEncoder is a stack of N encoder layers. Users can build the
    BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.

    Args:
        encoder_layer: an instance of the TransformerEncoderLayer() class (required).
        num_layers: the number of sub-encoder-layers in the encoder (required).
        norm: the layer normalization component (optional).
        enable_nested_tensor: if True, input will automatically convert to nested tensor
            (and convert back on output). This will improve the overall performance of
            TransformerEncoder when padding rate is high. Default: ``True`` (enabled).

    Examples::
        >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
        >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
        >>> src = torch.rand(10, 32, 512)
        >>> out = transformer_encoder(src)
    """
    __constants__ = ["norm"]

    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(
            self,
            src: Tensor,
            mask: Optional[Tensor]=None,
            src_key_padding_mask: Optional[Tensor]=None,
            return_layer_states: bool=False,cache=None ) -> Tensor:
        r"""Pass the input through the encoder layers in turn.

        Args:
            src: the sequence to the encoder (required).
            mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).
            return_layer_states: return layers' state (optional).

        Shape:
            see the docs in Transformer class.
        """
        if return_layer_states:
            layer_states = []  # layers' output
            output = src
            for mod in self.layers:
                output = mod(
                    output,
                    src_mask=mask,
                    src_key_padding_mask=src_key_padding_mask, cache=cache)
                layer_states.append(output[0])

            if self.norm is not None:
                output = self.norm(output)

            return layer_states, output

        output = src
        for mod in self.layers:
            output = mod(output,
                         src_mask=mask,
                         src_key_padding_mask=src_key_padding_mask, cache=cache)

        if self.norm is not None:
            output = self.norm(output)

        return output


class TransformerEncoderLayer(nn.Module):
    __constants__ = ["batch_first", "norm_first"]

    def __init__(
            self,
            d_model: int,
            nhead: int,
            dim_feedforward: int=2048,
            dropout: float=0.1,
            activation: Union[str, Callable[[Tensor], Tensor]]=F.relu,
            batch_first: bool=False,
            norm_first: bool=False,
            device=None,
            dtype=None,
            linear1_self_attention_cls: nn.Module=nn.Linear,
            linear2_self_attention_cls: nn.Module=nn.Linear,
            linear1_feedforward_cls: nn.Module=nn.Linear,
            linear2_feedforward_cls: nn.Module=nn.Linear,
            layer_norm_cls: nn.Module=LayerNorm,
            layer_norm_eps: float=1e-5,
            adaptive_layer_norm=False, ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super(TransformerEncoderLayer, self).__init__()
        # print(233333333333,d_model,nhead)
        # import os
        # os._exit(2333333)
        self.self_attn = MultiheadAttention(
            d_model,#512 16
            nhead,
            dropout=dropout,
            batch_first=batch_first,
            linear1_cls=linear1_self_attention_cls,
            linear2_cls=linear2_self_attention_cls,
            **factory_kwargs, )

        # Implementation of Feedforward model
        self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward,
                                               **factory_kwargs)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model,
                                               **factory_kwargs)

        self.norm_first = norm_first
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        # Legacy string support for activation function.
        if isinstance(activation, str):
            activation = _get_activation_fn(activation)
        elif isinstance(activation, partial):
            activation = activation(d_model)
        elif activation == BalancedDoubleSwish:
            activation = BalancedDoubleSwish(d_model)

        # # We can't test self.activation in forward() in TorchScript,
        # # so stash some information about it instead.
        # if activation is F.relu or isinstance(activation, torch.nn.ReLU):
        #     self.activation_relu_or_gelu = 1
        # elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
        #     self.activation_relu_or_gelu = 2
        # else:
        #     self.activation_relu_or_gelu = 0
        self.activation = activation

        norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
        if layer_norm_cls == IdentityNorm:
            norm2 = BalancedBasicNorm(
                d_model, eps=layer_norm_eps, **factory_kwargs)
        else:
            norm2 = layer_norm_cls(
                d_model, eps=layer_norm_eps, **factory_kwargs)

        if adaptive_layer_norm:
            self.norm1 = AdaptiveLayerNorm(d_model, norm1)
            self.norm2 = AdaptiveLayerNorm(d_model, norm2)
        else:
            self.norm1 = norm1
            self.norm2 = norm2

    def __setstate__(self, state):
        super(TransformerEncoderLayer, self).__setstate__(state)
        if not hasattr(self, "activation"):
            self.activation = F.relu

    def forward(
            self,
            src: Tensor,
            src_mask: Optional[Tensor]=None,
            src_key_padding_mask: Optional[Tensor]=None,cache=None ) -> Tensor:
        r"""Pass the input through the encoder layer.

        Args:
            src: the sequence to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        x, stage_embedding = src, None
        is_src_tuple = False
        if isinstance(src, tuple):
            x, stage_embedding = src
            is_src_tuple = True

        if src_key_padding_mask is not None:
            _skpm_dtype = src_key_padding_mask.dtype
            if _skpm_dtype != torch.bool and not torch.is_floating_point(
                    src_key_padding_mask):
                raise AssertionError(
                    "only bool and floating types of key_padding_mask are supported"
                )

        if self.norm_first:
            x = x + self._sa_block(
                self.norm1(x, stage_embedding),
                src_mask,
                src_key_padding_mask,cache=cache )
            x = x + self._ff_block(self.norm2(x, stage_embedding))
        else:
            x = self.norm1(
                x + self._sa_block(x, src_mask, src_key_padding_mask,cache=cache),
                stage_embedding, )
            x = self.norm2(x + self._ff_block(x), stage_embedding)

        if is_src_tuple:
            return (x, stage_embedding)
        return x

    # self-attention block
    def _sa_block(
            self,
            x: Tensor,
            attn_mask: Optional[Tensor],
            key_padding_mask: Optional[Tensor],cache=None ) -> Tensor:
        # print(x.shape,attn_mask.shape,key_padding_mask)
        #torch.Size([1, 188, 512]) torch.Size([188, 188]) None
        # import os
        # os._exit(23333)
        x = self.self_attn(
            x,
            x,
            x,
            attn_mask=attn_mask,
            key_padding_mask=key_padding_mask,
            need_weights=False,cache=cache )[0]
        return self.dropout1(x)

    # feed forward block
    def _ff_block(self, x: Tensor) -> Tensor:
        x = self.linear2(self.dropout(self.activation(self.linear1(x))))
        return self.dropout2(x)


class AdaptiveLayerNorm(nn.Module):
    r"""Adaptive Layer Normalization"""

    def __init__(self, d_model, norm) -> None:
        super(AdaptiveLayerNorm, self).__init__()
        self.project_layer = nn.Linear(d_model, 2 * d_model)
        self.norm = norm
        self.d_model = d_model
        self.eps = self.norm.eps

    def forward(self, input: Tensor, embedding: Tensor=None) -> Tensor:
        if isinstance(input, tuple):
            input, embedding = input
            weight, bias = torch.split(
                self.project_layer(embedding),
                split_size_or_sections=self.d_model,
                dim=-1, )
            return (weight * self.norm(input) + bias, embedding)

        weight, bias = torch.split(
            self.project_layer(embedding),
            split_size_or_sections=self.d_model,
            dim=-1, )
        return weight * self.norm(input) + bias

def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])