import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ new_path = "meta-llama/Meta-Llama-3.1-8B-Instruct" # cannot use 需pro用户 new_path2 = "Nexesenex/TeeZee_Kyllene-Yi-34B-v1.1-iMat.GGUF" new_path1 = "tastypear/CausalLM-7B-DPO-alpha-GGUF" # cannot use new_path3 = "aifeifei798/llama3-8B-DarkIdol-2.3-Uncensored-32K" new_path4 = "marianna13/byt5-small-NSFW-image-urls" origin_path = "HuggingFaceH4/zephyr-7b-beta" funny_path = "cognitivecomputations/WizardLM-7B-Uncensored" funny_model = "AI-B/UTENA-7B-NSFW-V2" translate_model = "utrobinmv/t5_translate_en_ru_zh_small_1024" client = InferenceClient(translate_model) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()