RickyIG commited on
Commit
6253649
·
1 Parent(s): f1b4adb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +207 -0
app.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def openai_api_calculate_cost(usage,model=GPT_MODEL):
2
+ pricing = {
3
+ # 'gpt-3.5-turbo-4k': {
4
+ # 'prompt': 0.0015,
5
+ # 'completion': 0.002,
6
+ # },
7
+ # 'gpt-3.5-turbo-16k': {
8
+ # 'prompt': 0.003,
9
+ # 'completion': 0.004,
10
+ # },
11
+ 'gpt-3.5-turbo-1106': {
12
+ 'prompt': 0.001,
13
+ 'completion': 0.002,
14
+ },
15
+ # 'gpt-4-1106-preview': {
16
+ # 'prompt': 0.01,
17
+ # 'completion': 0.03,
18
+ # },
19
+ # 'gpt-4-32k': {
20
+ # 'prompt': 0.06,
21
+ # 'completion': 0.12,
22
+ # },
23
+ # 'text-embedding-ada-002-v2': {
24
+ # 'prompt': 0.0001,
25
+ # 'completion': 0.0001,
26
+ # }
27
+ }
28
+
29
+ try:
30
+ model_pricing = pricing[model]
31
+ except KeyError:
32
+ raise ValueError("Invalid model specified")
33
+
34
+ prompt_cost = usage['prompt_tokens'] * model_pricing['prompt'] / 1000
35
+ completion_cost = usage['completion_tokens'] * model_pricing['completion'] / 1000
36
+
37
+ total_cost = prompt_cost + completion_cost
38
+ print(f"\nTokens used: {usage['prompt_tokens']:,} prompt + {usage['completion_tokens']:,} completion = {usage['total_tokens']:,} tokens")
39
+ print(f"Total cost for {model}: ${total_cost:.4f}\n")
40
+
41
+ return total_cost
42
+
43
+
44
+ @retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
45
+ def chat_completion_request(messages, functions=None, function_call=None, model=GPT_MODEL):
46
+ """
47
+ This function sends a POST request to the OpenAI API to generate a chat completion.
48
+
49
+ Parameters:
50
+ - messages (list): A list of message objects. Each object should have a 'role' (either 'system', 'user', or 'assistant') and 'content'
51
+ (the content of the message).
52
+ - functions (list, optional): A list of function objects that describe the functions that the model can call.
53
+ - function_call (str or dict, optional): If it's a string, it can be either 'auto' (the model decides whether to call a function) or 'none'
54
+ (the model will not call a function). If it's a dict, it should describe the function to call.
55
+ - model (str): The ID of the model to use.
56
+
57
+ Returns:
58
+ - response (requests.Response): The response from the OpenAI API. If the request was successful, the response's JSON will contain the chat completion.
59
+ """
60
+
61
+ # Set up the headers for the API request
62
+ headers = {
63
+ "Content-Type": "application/json",
64
+ "Authorization": "Bearer " + openai.api_key,
65
+ }
66
+
67
+ # Set up the data for the API request
68
+ json_data = {"model": model, "messages": messages}
69
+
70
+ # If functions were provided, add them to the data
71
+ if functions is not None:
72
+ json_data.update({"functions": functions})
73
+
74
+ # If a function call was specified, add it to the data
75
+ if function_call is not None:
76
+ json_data.update({"function_call": function_call})
77
+
78
+ # Send the API request
79
+ try:
80
+ response = requests.post(
81
+ "https://api.openai.com/v1/chat/completions",
82
+ headers=headers,
83
+ json=json_data,
84
+ )
85
+ return response
86
+ except Exception as e:
87
+ print("Unable to generate ChatCompletion response")
88
+ print(f"Exception: {e}")
89
+ return e
90
+
91
+ def first_call(init_prompt, user_input):
92
+ # Set up a conversation
93
+ messages = []
94
+ messages.append({"role": "system", "content": init_prompt})
95
+
96
+ # Write a user message that perhaps our function can handle...?
97
+ messages.append({"role": "user", "content": user_input})
98
+
99
+ # Generate a response
100
+ chat_response = chat_completion_request(
101
+ messages, functions=functions
102
+ )
103
+
104
+
105
+ # Save the JSON to a variable
106
+ assistant_message = chat_response.json()["choices"][0]["message"]
107
+
108
+ # Append response to conversation
109
+ messages.append(assistant_message)
110
+
111
+ usage = chat_response.json()['usage']
112
+ cost1 = openai_api_calculate_cost(usage)
113
+
114
+ # Let's see what we got back before continuing
115
+ return assistant_message, cost1
116
+
117
+ from IPython import get_ipython
118
+
119
+ def exec_python(cell):
120
+ ipython = get_ipython()
121
+ result = ipython.run_cell(cell)
122
+ log = str(result.result)
123
+ if result.error_before_exec is not None:
124
+ log += f"\n{result.error_before_exec}"
125
+ if result.error_in_exec is not None:
126
+ log += f"\n{result.error_in_exec}"
127
+ prompt = """You are a genius math tutor, Python code expert, and a helpful assistant.
128
+ answer = {ans}
129
+
130
+ Please answer user questions very well with explanations and match it with the multiple choices question.
131
+ """.format(ans = log)
132
+ return log
133
+
134
+ def second_prompt_build(prompt, log):
135
+ prompt_second = prompt.format(ans = log)
136
+ return prompt_second
137
+
138
+ def function_call_process(assistant_message):
139
+ if assistant_message.get("function_call") != None:
140
+
141
+ # Retrieve the name of the relevant function
142
+ function_name = assistant_message["function_call"]["name"]
143
+
144
+ # Retrieve the arguments to send the function
145
+ # function_args = json.loads(assistant_message["function_call"]["arguments"], strict=False)
146
+ arg_dict = {'cell': assistant_message["function_call"]["arguments"]}
147
+ # print(function_args)
148
+
149
+ # Look up the function and call it with the provided arguments
150
+ result = functions_dict[function_name](**arg_dict)
151
+ return result
152
+
153
+ # print(result)
154
+
155
+ def second_call(prompt):
156
+ # Add a new message to the conversation with the function result
157
+ messages.append({
158
+ "role": "function",
159
+ "name": function_name,
160
+ "content": str(result), # Convert the result to a string
161
+ })
162
+
163
+ # Call the model again to generate a user-facing message based on the function result
164
+ chat_response = chat_completion_request(
165
+ messages, functions=functions
166
+ )
167
+ assistant_message = chat_response.json()["choices"][0]["message"]
168
+ messages.append(assistant_message)
169
+
170
+ usage = chat_response.json()['usage']
171
+ cost2 = openai_api_calculate_cost(usage)
172
+
173
+ # Print the final conversation
174
+ # pretty_print_conversation(messages)
175
+ return assistant_message, cost2
176
+
177
+
178
+ def main_function(init_prompt, prompt, user_input):
179
+ first_call_result, cost1 = first_call(init_prompt, user_input)
180
+ function_call_process_result = function_call_process(first_call_result)
181
+ second_prompt_build_result = second_prompt_build(prompt, result)
182
+ second_call_result, cost2 = second_call(second_prompt_build_result)
183
+ return first_call_result, function_call_process_result, second_call_result, cost1, cost2
184
+
185
+ def gradio_function():
186
+ init_prompt = gr.Textbox(label="init_prompt (for 1st call)")
187
+ prompt = gr.Textbox(label="prompt (for 2nd call)")
188
+ user_input = gr.Textbox(label="User Input")
189
+ output_1st_call = gr.Textbox(label="output_1st_call")
190
+ output_fc_call = gr.Textbox(label="output_fc_call")
191
+ output_2nd_call = gr.Textbox(label="output_2nd_call")
192
+ cost = gr.Textbox(label="Cost 1")
193
+ cost2 = gr.Textbox(label="Cost 2")
194
+
195
+
196
+ iface = gr.Interface(
197
+ fn=main_function,
198
+ inputs=[init_prompt, prompt, user_input],
199
+ outputs=[output_1st_call, output_fc_call, output_2nd_call, cost, cost2],
200
+ title="Test",
201
+ description="Accuracy",
202
+ )
203
+
204
+ iface.launch(share=True)
205
+
206
+ if __name__ == "__main__":
207
+ gradio_function()