File size: 10,148 Bytes
5d21dd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
from .DW_EncoderDecoder import *
from .Patch_Discriminator import Patch_Discriminator
import torch
import kornia.losses
import lpips
class Network:
def __init__(self, message_length, noise_layers_R, noise_layers_F, device, batch_size, lr, beta1, attention_encoder, attention_decoder, weight):
# device
self.device = device
# loss function
self.criterion_MSE = nn.MSELoss().to(device)
self.criterion_LPIPS = lpips.LPIPS().to(device)
# weight of encoder-decoder loss
self.encoder_weight = weight[0]
self.decoder_weight_C = weight[1]
self.decoder_weight_R = weight[2]
self.decoder_weight_F = weight[3]
self.discriminator_weight = weight[4]
# network
self.encoder_decoder = DW_EncoderDecoder(message_length, noise_layers_R, noise_layers_F, attention_encoder, attention_decoder).to(device)
self.discriminator = Patch_Discriminator().to(device)
self.encoder_decoder = torch.nn.DataParallel(self.encoder_decoder)
self.discriminator = torch.nn.DataParallel(self.discriminator)
# mark "cover" as 1, "encoded" as -1
self.label_cover = 1.0
self.label_encoded = - 1.0
for p in self.encoder_decoder.module.noise.parameters():
p.requires_grad = False
# optimizer
self.opt_encoder_decoder = torch.optim.Adam(
filter(lambda p: p.requires_grad, self.encoder_decoder.parameters()), lr=lr, betas=(beta1, 0.999))
self.opt_discriminator = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
def train(self, images: torch.Tensor, messages: torch.Tensor, masks: torch.Tensor):
self.encoder_decoder.train()
self.discriminator.train()
with torch.enable_grad():
# use device to compute
images, messages, masks = images.to(self.device), messages.to(self.device), masks.to(self.device)
encoded_images, noised_images, decoded_messages_C, decoded_messages_R, decoded_messages_F = self.encoder_decoder(images, messages, masks)
'''
train discriminator
'''
for p in self.discriminator.parameters():
p.requires_grad = True
self.opt_discriminator.zero_grad()
# RAW : target label for image should be "cover"(1)
d_label_cover = self.discriminator(images)
#d_cover_loss = self.criterion_MSE(d_label_cover, torch.ones_like(d_label_cover))
#d_cover_loss.backward()
# GAN : target label for encoded image should be "encoded"(0)
d_label_encoded = self.discriminator(encoded_images.detach())
#d_encoded_loss = self.criterion_MSE(d_label_encoded, torch.zeros_like(d_label_encoded))
#d_encoded_loss.backward()
d_loss = self.criterion_MSE(d_label_cover - torch.mean(d_label_encoded), self.label_cover * torch.ones_like(d_label_cover)) +\
self.criterion_MSE(d_label_encoded - torch.mean(d_label_cover), self.label_encoded * torch.ones_like(d_label_encoded))
d_loss.backward()
self.opt_discriminator.step()
'''
train encoder and decoder
'''
# Make it a tiny bit faster
for p in self.discriminator.parameters():
p.requires_grad = False
self.opt_encoder_decoder.zero_grad()
# GAN : target label for encoded image should be "cover"(0)
g_label_cover = self.discriminator(images)
g_label_encoded = self.discriminator(encoded_images)
g_loss_on_discriminator = self.criterion_MSE(g_label_cover - torch.mean(g_label_encoded), self.label_encoded * torch.ones_like(g_label_cover)) +\
self.criterion_MSE(g_label_encoded - torch.mean(g_label_cover), self.label_cover * torch.ones_like(g_label_encoded))
# RAW : the encoded image should be similar to cover image
g_loss_on_encoder_MSE = self.criterion_MSE(encoded_images, images)
g_loss_on_encoder_LPIPS = torch.mean(self.criterion_LPIPS(encoded_images, images))
# RESULT : the decoded message should be similar to the raw message /Dual
g_loss_on_decoder_C = self.criterion_MSE(decoded_messages_C, messages)
g_loss_on_decoder_R = self.criterion_MSE(decoded_messages_R, messages)
g_loss_on_decoder_F = self.criterion_MSE(decoded_messages_F, torch.zeros_like(messages))
# full loss
g_loss = self.discriminator_weight * g_loss_on_discriminator + self.encoder_weight * g_loss_on_encoder_MSE +\
self.decoder_weight_C * g_loss_on_decoder_C + self.decoder_weight_R * g_loss_on_decoder_R + self.decoder_weight_F * g_loss_on_decoder_F
g_loss.backward()
self.opt_encoder_decoder.step()
# psnr
psnr = - kornia.losses.psnr_loss(encoded_images.detach(), images, 2)
# ssim
ssim = 1 - 2 * kornia.losses.ssim_loss(encoded_images.detach(), images, window_size=11, reduction="mean")
'''
decoded message error rate /Dual
'''
error_rate_C = self.decoded_message_error_rate_batch(messages, decoded_messages_C)
error_rate_R = self.decoded_message_error_rate_batch(messages, decoded_messages_R)
error_rate_F = self.decoded_message_error_rate_batch(messages, decoded_messages_F)
result = {
"g_loss": g_loss,
"error_rate_C": error_rate_C,
"error_rate_R": error_rate_R,
"error_rate_F": error_rate_F,
"psnr": psnr,
"ssim": ssim,
"g_loss_on_discriminator": g_loss_on_discriminator,
"g_loss_on_encoder_MSE": g_loss_on_encoder_MSE,
"g_loss_on_encoder_LPIPS": g_loss_on_encoder_LPIPS,
"g_loss_on_decoder_C": g_loss_on_decoder_C,
"g_loss_on_decoder_R": g_loss_on_decoder_R,
"g_loss_on_decoder_F": g_loss_on_decoder_F,
"d_loss": d_loss
}
return result
def validation(self, images: torch.Tensor, messages: torch.Tensor, masks: torch.Tensor):
self.encoder_decoder.eval()
self.encoder_decoder.module.noise.train()
self.discriminator.eval()
with torch.no_grad():
# use device to compute
images, messages, masks = images.to(self.device), messages.to(self.device), masks.to(self.device)
encoded_images, noised_images, decoded_messages_C, decoded_messages_R, decoded_messages_F = self.encoder_decoder(images, messages, masks)
'''
validate discriminator
'''
# RAW : target label for image should be "cover"(1)
d_label_cover = self.discriminator(images)
#d_cover_loss = self.criterion_MSE(d_label_cover, torch.ones_like(d_label_cover))
# GAN : target label for encoded image should be "encoded"(0)
d_label_encoded = self.discriminator(encoded_images.detach())
#d_encoded_loss = self.criterion_MSE(d_label_encoded, torch.zeros_like(d_label_encoded))
d_loss = self.criterion_MSE(d_label_cover - torch.mean(d_label_encoded), self.label_cover * torch.ones_like(d_label_cover)) +\
self.criterion_MSE(d_label_encoded - torch.mean(d_label_cover), self.label_encoded * torch.ones_like(d_label_encoded))
'''
validate encoder and decoder
'''
# GAN : target label for encoded image should be "cover"(0)
g_label_cover = self.discriminator(images)
g_label_encoded = self.discriminator(encoded_images)
g_loss_on_discriminator = self.criterion_MSE(g_label_cover - torch.mean(g_label_encoded), self.label_encoded * torch.ones_like(g_label_cover)) +\
self.criterion_MSE(g_label_encoded - torch.mean(g_label_cover), self.label_cover * torch.ones_like(g_label_encoded))
# RAW : the encoded image should be similar to cover image
g_loss_on_encoder_MSE = self.criterion_MSE(encoded_images, images)
g_loss_on_encoder_LPIPS = torch.mean(self.criterion_LPIPS(encoded_images, images))
# RESULT : the decoded message should be similar to the raw message /Dual
g_loss_on_decoder_C = self.criterion_MSE(decoded_messages_C, messages)
g_loss_on_decoder_R = self.criterion_MSE(decoded_messages_R, messages)
g_loss_on_decoder_F = self.criterion_MSE(decoded_messages_F, torch.zeros_like(messages))
# full loss
# unstable g_loss_on_discriminator is not used during validation
g_loss = 0 * g_loss_on_discriminator + self.encoder_weight * g_loss_on_encoder_LPIPS +\
self.decoder_weight_C * g_loss_on_decoder_C + self.decoder_weight_R * g_loss_on_decoder_R + self.decoder_weight_F * g_loss_on_decoder_F
# psnr
psnr = - kornia.losses.psnr_loss(encoded_images.detach(), images, 2)
# ssim
ssim = 1 - 2 * kornia.losses.ssim_loss(encoded_images.detach(), images, window_size=11, reduction="mean")
'''
decoded message error rate /Dual
'''
error_rate_C = self.decoded_message_error_rate_batch(messages, decoded_messages_C)
error_rate_R = self.decoded_message_error_rate_batch(messages, decoded_messages_R)
error_rate_F = self.decoded_message_error_rate_batch(messages, decoded_messages_F)
result = {
"g_loss": g_loss,
"error_rate_C": error_rate_C,
"error_rate_R": error_rate_R,
"error_rate_F": error_rate_F,
"psnr": psnr,
"ssim": ssim,
"g_loss_on_discriminator": g_loss_on_discriminator,
"g_loss_on_encoder_MSE": g_loss_on_encoder_MSE,
"g_loss_on_encoder_LPIPS": g_loss_on_encoder_LPIPS,
"g_loss_on_decoder_C": g_loss_on_decoder_C,
"g_loss_on_decoder_R": g_loss_on_decoder_R,
"g_loss_on_decoder_F": g_loss_on_decoder_F,
"d_loss": d_loss
}
return result, (images, encoded_images, noised_images)
def decoded_message_error_rate(self, message, decoded_message):
length = message.shape[0]
message = message.gt(0)
decoded_message = decoded_message.gt(0)
error_rate = float(sum(message != decoded_message)) / length
return error_rate
def decoded_message_error_rate_batch(self, messages, decoded_messages):
error_rate = 0.0
batch_size = len(messages)
for i in range(batch_size):
error_rate += self.decoded_message_error_rate(messages[i], decoded_messages[i])
error_rate /= batch_size
return error_rate
def save_model(self, path_encoder_decoder: str, path_discriminator: str):
torch.save(self.encoder_decoder.module.state_dict(), path_encoder_decoder)
torch.save(self.discriminator.module.state_dict(), path_discriminator)
def load_model(self, path_encoder_decoder: str, path_discriminator: str):
self.load_model_ed(path_encoder_decoder)
self.load_model_dis(path_discriminator)
def load_model_ed(self, path_encoder_decoder: str):
self.encoder_decoder.module.load_state_dict(torch.load(path_encoder_decoder), strict=False)
def load_model_dis(self, path_discriminator: str):
self.discriminator.module.load_state_dict(torch.load(path_discriminator))
|