File size: 10,148 Bytes
5d21dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from .DW_EncoderDecoder import *
from .Patch_Discriminator import Patch_Discriminator
import torch
import kornia.losses
import lpips


class Network:

	def __init__(self, message_length, noise_layers_R, noise_layers_F, device, batch_size, lr, beta1, attention_encoder, attention_decoder, weight):
		# device
		self.device = device

		# loss function
		self.criterion_MSE = nn.MSELoss().to(device)
		self.criterion_LPIPS = lpips.LPIPS().to(device)

		# weight of encoder-decoder loss
		self.encoder_weight = weight[0]
		self.decoder_weight_C = weight[1]
		self.decoder_weight_R = weight[2]
		self.decoder_weight_F = weight[3]
		self.discriminator_weight = weight[4]

		# network
		self.encoder_decoder = DW_EncoderDecoder(message_length, noise_layers_R, noise_layers_F, attention_encoder, attention_decoder).to(device)
		self.discriminator = Patch_Discriminator().to(device)

		self.encoder_decoder = torch.nn.DataParallel(self.encoder_decoder)
		self.discriminator = torch.nn.DataParallel(self.discriminator)

		# mark "cover" as 1, "encoded" as -1
		self.label_cover = 1.0
		self.label_encoded = - 1.0

		for p in self.encoder_decoder.module.noise.parameters():
			p.requires_grad = False

		# optimizer
		self.opt_encoder_decoder = torch.optim.Adam(
			filter(lambda p: p.requires_grad, self.encoder_decoder.parameters()), lr=lr, betas=(beta1, 0.999))
		self.opt_discriminator = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(beta1, 0.999))


	def train(self, images: torch.Tensor, messages: torch.Tensor, masks: torch.Tensor):
		self.encoder_decoder.train()
		self.discriminator.train()

		with torch.enable_grad():
			# use device to compute
			images, messages, masks = images.to(self.device), messages.to(self.device), masks.to(self.device)
			encoded_images, noised_images, decoded_messages_C, decoded_messages_R, decoded_messages_F = self.encoder_decoder(images, messages, masks)

			'''
			train discriminator
			'''
			for p in self.discriminator.parameters():
				p.requires_grad = True

			self.opt_discriminator.zero_grad()

			# RAW : target label for image should be "cover"(1)
			d_label_cover = self.discriminator(images)
			#d_cover_loss = self.criterion_MSE(d_label_cover, torch.ones_like(d_label_cover))
			#d_cover_loss.backward()

			# GAN : target label for encoded image should be "encoded"(0)
			d_label_encoded = self.discriminator(encoded_images.detach())
			#d_encoded_loss = self.criterion_MSE(d_label_encoded, torch.zeros_like(d_label_encoded))
			#d_encoded_loss.backward()

			d_loss = self.criterion_MSE(d_label_cover - torch.mean(d_label_encoded), self.label_cover * torch.ones_like(d_label_cover)) +\
			         self.criterion_MSE(d_label_encoded - torch.mean(d_label_cover), self.label_encoded * torch.ones_like(d_label_encoded))
			d_loss.backward()

			self.opt_discriminator.step()

			'''
			train encoder and decoder
			'''
			# Make it a tiny bit faster
			for p in self.discriminator.parameters():
				p.requires_grad = False

			self.opt_encoder_decoder.zero_grad()

			# GAN : target label for encoded image should be "cover"(0)
			g_label_cover = self.discriminator(images)
			g_label_encoded = self.discriminator(encoded_images)
			g_loss_on_discriminator = self.criterion_MSE(g_label_cover - torch.mean(g_label_encoded), self.label_encoded * torch.ones_like(g_label_cover)) +\
									  self.criterion_MSE(g_label_encoded - torch.mean(g_label_cover), self.label_cover * torch.ones_like(g_label_encoded))

			# RAW : the encoded image should be similar to cover image
			g_loss_on_encoder_MSE = self.criterion_MSE(encoded_images, images)
			g_loss_on_encoder_LPIPS = torch.mean(self.criterion_LPIPS(encoded_images, images))

			# RESULT : the decoded message should be similar to the raw message /Dual
			g_loss_on_decoder_C = self.criterion_MSE(decoded_messages_C, messages)
			g_loss_on_decoder_R = self.criterion_MSE(decoded_messages_R, messages)
			g_loss_on_decoder_F = self.criterion_MSE(decoded_messages_F, torch.zeros_like(messages))

			# full loss
			g_loss = self.discriminator_weight * g_loss_on_discriminator + self.encoder_weight * g_loss_on_encoder_MSE +\
					 self.decoder_weight_C * g_loss_on_decoder_C + self.decoder_weight_R * g_loss_on_decoder_R + self.decoder_weight_F * g_loss_on_decoder_F

			g_loss.backward()
			self.opt_encoder_decoder.step()

			# psnr
			psnr = - kornia.losses.psnr_loss(encoded_images.detach(), images, 2)

			# ssim
			ssim = 1 - 2 * kornia.losses.ssim_loss(encoded_images.detach(), images, window_size=11, reduction="mean")

		'''
		decoded message error rate /Dual
		'''
		error_rate_C = self.decoded_message_error_rate_batch(messages, decoded_messages_C)
		error_rate_R = self.decoded_message_error_rate_batch(messages, decoded_messages_R)
		error_rate_F = self.decoded_message_error_rate_batch(messages, decoded_messages_F)

		result = {
			"g_loss": g_loss,
			"error_rate_C": error_rate_C,
			"error_rate_R": error_rate_R,
			"error_rate_F": error_rate_F,
			"psnr": psnr,
			"ssim": ssim,
			"g_loss_on_discriminator": g_loss_on_discriminator,
			"g_loss_on_encoder_MSE": g_loss_on_encoder_MSE,
			"g_loss_on_encoder_LPIPS": g_loss_on_encoder_LPIPS,
			"g_loss_on_decoder_C": g_loss_on_decoder_C,
			"g_loss_on_decoder_R": g_loss_on_decoder_R,
			"g_loss_on_decoder_F": g_loss_on_decoder_F,
			"d_loss": d_loss
		}
		return result


	def validation(self, images: torch.Tensor, messages: torch.Tensor, masks: torch.Tensor):
		self.encoder_decoder.eval()
		self.encoder_decoder.module.noise.train()
		self.discriminator.eval()

		with torch.no_grad():
			# use device to compute
			images, messages, masks = images.to(self.device), messages.to(self.device), masks.to(self.device)
			encoded_images, noised_images, decoded_messages_C, decoded_messages_R, decoded_messages_F = self.encoder_decoder(images, messages, masks)

			'''
			validate discriminator
			'''
			# RAW : target label for image should be "cover"(1)
			d_label_cover = self.discriminator(images)
			#d_cover_loss = self.criterion_MSE(d_label_cover, torch.ones_like(d_label_cover))

			# GAN : target label for encoded image should be "encoded"(0)
			d_label_encoded = self.discriminator(encoded_images.detach())
			#d_encoded_loss = self.criterion_MSE(d_label_encoded, torch.zeros_like(d_label_encoded))

			d_loss = self.criterion_MSE(d_label_cover - torch.mean(d_label_encoded), self.label_cover * torch.ones_like(d_label_cover)) +\
			         self.criterion_MSE(d_label_encoded - torch.mean(d_label_cover), self.label_encoded * torch.ones_like(d_label_encoded))

			'''
			validate encoder and decoder
			'''

			# GAN : target label for encoded image should be "cover"(0)
			g_label_cover = self.discriminator(images)
			g_label_encoded = self.discriminator(encoded_images)
			g_loss_on_discriminator = self.criterion_MSE(g_label_cover - torch.mean(g_label_encoded), self.label_encoded * torch.ones_like(g_label_cover)) +\
									  self.criterion_MSE(g_label_encoded - torch.mean(g_label_cover), self.label_cover * torch.ones_like(g_label_encoded))

			# RAW : the encoded image should be similar to cover image
			g_loss_on_encoder_MSE = self.criterion_MSE(encoded_images, images)
			g_loss_on_encoder_LPIPS = torch.mean(self.criterion_LPIPS(encoded_images, images))

			# RESULT : the decoded message should be similar to the raw message /Dual
			g_loss_on_decoder_C = self.criterion_MSE(decoded_messages_C, messages)
			g_loss_on_decoder_R = self.criterion_MSE(decoded_messages_R, messages)
			g_loss_on_decoder_F = self.criterion_MSE(decoded_messages_F, torch.zeros_like(messages))

			# full loss
			# unstable g_loss_on_discriminator is not used during validation

			g_loss = 0 * g_loss_on_discriminator + self.encoder_weight * g_loss_on_encoder_LPIPS +\
					 self.decoder_weight_C * g_loss_on_decoder_C + self.decoder_weight_R * g_loss_on_decoder_R + self.decoder_weight_F * g_loss_on_decoder_F


			# psnr
			psnr = - kornia.losses.psnr_loss(encoded_images.detach(), images, 2)

			# ssim
			ssim = 1 - 2 * kornia.losses.ssim_loss(encoded_images.detach(), images, window_size=11, reduction="mean")

		'''
		decoded message error rate /Dual
		'''
		error_rate_C = self.decoded_message_error_rate_batch(messages, decoded_messages_C)
		error_rate_R = self.decoded_message_error_rate_batch(messages, decoded_messages_R)
		error_rate_F = self.decoded_message_error_rate_batch(messages, decoded_messages_F)

		result = {
			"g_loss": g_loss,
			"error_rate_C": error_rate_C,
			"error_rate_R": error_rate_R,
			"error_rate_F": error_rate_F,
			"psnr": psnr,
			"ssim": ssim,
			"g_loss_on_discriminator": g_loss_on_discriminator,
			"g_loss_on_encoder_MSE": g_loss_on_encoder_MSE,
			"g_loss_on_encoder_LPIPS": g_loss_on_encoder_LPIPS,
			"g_loss_on_decoder_C": g_loss_on_decoder_C,
			"g_loss_on_decoder_R": g_loss_on_decoder_R,
			"g_loss_on_decoder_F": g_loss_on_decoder_F,
			"d_loss": d_loss
		}

		return result, (images, encoded_images, noised_images)

	def decoded_message_error_rate(self, message, decoded_message):
		length = message.shape[0]

		message = message.gt(0)
		decoded_message = decoded_message.gt(0)
		error_rate = float(sum(message != decoded_message)) / length
		return error_rate

	def decoded_message_error_rate_batch(self, messages, decoded_messages):
		error_rate = 0.0
		batch_size = len(messages)
		for i in range(batch_size):
			error_rate += self.decoded_message_error_rate(messages[i], decoded_messages[i])
		error_rate /= batch_size
		return error_rate

	def save_model(self, path_encoder_decoder: str, path_discriminator: str):
		torch.save(self.encoder_decoder.module.state_dict(), path_encoder_decoder)
		torch.save(self.discriminator.module.state_dict(), path_discriminator)

	def load_model(self, path_encoder_decoder: str, path_discriminator: str):
		self.load_model_ed(path_encoder_decoder)
		self.load_model_dis(path_discriminator)

	def load_model_ed(self, path_encoder_decoder: str):
		self.encoder_decoder.module.load_state_dict(torch.load(path_encoder_decoder), strict=False)

	def load_model_dis(self, path_discriminator: str):
		self.discriminator.module.load_state_dict(torch.load(path_discriminator))