File size: 8,383 Bytes
5d21dd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import torch
import torch.nn as nn
import torch.nn.functional as F
class SEAttention(nn.Module):
def __init__(self, in_channels, out_channels, reduction=8):
super(SEAttention, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(in_channels=in_channels, out_channels=out_channels // reduction, kernel_size=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=out_channels // reduction, out_channels=out_channels, kernel_size=1, bias=False),
nn.Sigmoid()
)
def forward(self, x):
x = self.se(x) * x
return x
class ChannelAttention(nn.Module):
def __init__(self, in_channels, out_channels, reduction=8):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.max_pool = nn.AdaptiveMaxPool2d((1, 1))
self.fc = nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels // reduction, kernel_size=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=out_channels // reduction, out_channels=out_channels, kernel_size=1, bias=False))
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size // 2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class CBAMAttention(nn.Module):
def __init__(self, in_channels, out_channels, reduction=8):
super(CBAMAttention, self).__init__()
self.ca = ChannelAttention(in_channels=in_channels, out_channels=out_channels, reduction=reduction)
self.sa = SpatialAttention()
def forward(self, x):
x = self.ca(x) * x
x = self.sa(x) * x
return x
class h_sigmoid(nn.Module):
def __init__(self, inplace=True):
super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return self.relu(x + 3) / 6
class h_swish(nn.Module):
def __init__(self, inplace=True):
super(h_swish, self).__init__()
self.sigmoid = h_sigmoid(inplace=inplace)
def forward(self, x):
return x * self.sigmoid(x)
class CoordAttention(nn.Module):
def __init__(self, in_channels, out_channels, reduction=8):
super(CoordAttention, self).__init__()
self.pool_w, self.pool_h = nn.AdaptiveAvgPool2d((1, None)), nn.AdaptiveAvgPool2d((None, 1))
temp_c = max(8, in_channels // reduction)
self.conv1 = nn.Conv2d(in_channels, temp_c, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.InstanceNorm2d(temp_c)
self.act1 = h_swish() # nn.SiLU() # nn.Hardswish() # nn.SiLU()
self.conv2 = nn.Conv2d(temp_c, out_channels, kernel_size=1, stride=1, padding=0)
self.conv3 = nn.Conv2d(temp_c, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
short = x
n, c, H, W = x.shape
x_h, x_w = self.pool_h(x), self.pool_w(x).permute(0, 1, 3, 2)
x_cat = torch.cat([x_h, x_w], dim=2)
out = self.act1(self.bn1(self.conv1(x_cat)))
x_h, x_w = torch.split(out, [H, W], dim=2)
x_w = x_w.permute(0, 1, 3, 2)
out_h = torch.sigmoid(self.conv2(x_h))
out_w = torch.sigmoid(self.conv3(x_w))
return short * out_w * out_h
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, reduction, stride, attention=None):
super(BasicBlock, self).__init__()
self.change = None
if (in_channels != out_channels or stride != 1):
self.change = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, padding=0,
stride=stride, bias=False),
nn.InstanceNorm2d(out_channels)
)
self.left = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1,
stride=stride, bias=False),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, padding=1, bias=False),
nn.InstanceNorm2d(out_channels)
)
if attention == 'se':
print('SEAttention')
self.attention = SEAttention(in_channels=out_channels, out_channels=out_channels, reduction=reduction)
elif attention == 'cbam':
print('CBAMAttention')
self.attention = CBAMAttention(in_channels=out_channels, out_channels=out_channels, reduction=reduction)
elif attention == 'coord':
print('CoordAttention')
self.attention = CoordAttention(in_channels=out_channels, out_channels=out_channels, reduction=reduction)
else:
print('None Attention')
self.attention = nn.Identity()
def forward(self, x):
identity = x
x = self.left(x)
x = self.attention(x)
if self.change is not None:
identity = self.change(identity)
x += identity
x = F.relu(x)
return x
class BottleneckBlock(nn.Module):
def __init__(self, in_channels, out_channels, reduction, stride, attention=None):
super(BottleneckBlock, self).__init__()
self.change = None
if (in_channels != out_channels or stride != 1):
self.change = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, padding=0,
stride=stride, bias=False),
nn.InstanceNorm2d(out_channels)
)
self.left = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
stride=stride, padding=0, bias=False),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, padding=1, bias=False),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=1, padding=0, bias=False),
nn.InstanceNorm2d(out_channels)
)
if attention == 'se':
print('SEAttention')
self.attention = SEAttention(in_channels=out_channels, out_channels=out_channels, reduction=reduction)
elif attention == 'cbam':
print('CBAMAttention')
self.attention = CBAMAttention(in_channels=out_channels, out_channels=out_channels, reduction=reduction)
elif attention == 'coord':
print('CoordAttention')
self.attention = CoordAttention(in_channels=out_channels, out_channels=out_channels, reduction=reduction)
else:
print('None Attention')
self.attention = nn.Identity()
def forward(self, x):
identity = x
x = self.left(x)
x = self.attention(x)
if self.change is not None:
identity = self.change(identity)
x += identity
x = F.relu(x)
return x
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, blocks=1, block_type="BottleneckBlock", reduction=8, stride=1, attention=None):
super(ResBlock, self).__init__()
layers = [eval(block_type)(in_channels, out_channels, reduction, stride, attention=attention)] if blocks != 0 else []
for _ in range(blocks - 1):
layer = eval(block_type)(out_channels, out_channels, reduction, 1, attention=attention)
layers.append(layer)
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
|