import gradio as gr from fastai.learner import load_learner from fastai.vision.all import PILImage learn = load_learner('model/export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), interpretation='default').launch()