FND / app.py
Rifky's picture
Update app.py
a8075a2
raw
history blame
3.33 kB
import streamlit as st
import numpy as np
import pandas as pd
import re
import time
import os
from transformers import AutoModelForSequenceClassification, AutoModel, AutoTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from Scraper import Scrap
st.set_page_config(layout="wide")
model_checkpoint = "Rifky/indobert-hoax-classification"
base_model_checkpoint = "indobenchmark/indobert-base-p1"
data_checkpoint = "Rifky/indonesian-hoax-news"
label = {0: "valid", 1: "fake"}
@st.cache(show_spinner=False, allow_output_mutation=True)
def load_model():
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
base_model = SentenceTransformer(base_model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, fast=True)
data = load_dataset(data_checkpoint, split="train")
return model, base_model, tokenizer, data
def sigmoid(x):
return 1 / (1 + np.exp(-x))
input_column, reference_column = st.columns(2)
input_column.write('# Fake News Detection AI')
with st.spinner("Loading Model..."):
model, base_model, tokenizer, data = load_model()
user_input = input_column.text_input("Article url")
submit = input_column.button("submit")
if submit:
last_time = time.time()
with st.spinner("Reading Article..."):
title, text = Scrap(user_input)
if text:
text = re.sub(r'\n', ' ', text)
with st.spinner("Computing..."):
token = text.split()
text_len = len(token)
sequences = []
for i in range(text_len // 512):
sequences.append(" ".join(token[i * 512: (i + 1) * 512]))
sequences.append(" ".join(token[text_len - (text_len % 512) : text_len]))
sequences = tokenizer(sequences, max_length=512, truncation=True, padding="max_length", return_tensors='pt')
predictions = model(**sequences)[0].detach().numpy()
result = [
np.sum([sigmoid(i[0]) for i in predictions]) / len(predictions),
np.sum([sigmoid(i[1]) for i in predictions]) / len(predictions)
]
print (f'\nresult: {result}')
title_embeddings = base_model.encode(title)
similarity_score = cosine_similarity(
[title_embeddings],
data["embeddings"]
).flatten()
sorted = np.argsort(similarity_score)[::-1].tolist()
input_column.markdown(f"<small>Compute Finished in {int(time.time() - last_time)} seconds</small>", unsafe_allow_html=True)
prediction = np.argmax(result, axis=-1)
input_column.success(f"This news is {label[prediction]}.")
input_column.text(f"{int(result[prediction]*100)}% confidence")
input_column.progress(result[prediction])
for i in sorted[:5]:
reference_column.write(f"""
<small>turnbackhoax.id</small>
<a href={data["url"][i]}><h5>{data["title"][i]}</h5></a>
""", unsafe_allow_html=True)
with reference_column.expander("read content"):
st.write(data["text"][i])