File size: 6,053 Bytes
5ebeb73
 
 
 
 
 
 
7263d32
5ebeb73
 
 
 
 
 
 
 
 
 
 
3b057c5
 
 
 
5ebeb73
 
 
 
 
 
 
 
7263d32
5ebeb73
 
 
 
 
 
 
 
 
 
 
 
7263d32
 
 
 
 
125e166
 
 
 
 
5ebeb73
125e166
7263d32
5ebeb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7263d32
5ebeb73
 
 
 
 
 
7263d32
5ebeb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7263d32
5ebeb73
 
 
7263d32
 
 
 
 
 
5ebeb73
7263d32
 
 
 
 
 
5ebeb73
 
 
 
7263d32
5ebeb73
 
 
 
7263d32
 
 
5ebeb73
 
 
 
 
 
 
 
 
 
 
7263d32
5ebeb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os

import gradio as gr
import pandas as pd

from src.htr_pipeline.inferencer import Inferencer, InferencerInterface
from src.htr_pipeline.pipeline import Pipeline, PipelineInterface
from src.htr_pipeline.utils.helper import gradio_info


class SingletonModelLoader:
    _instance = None

    def __new__(cls, *args, **kwargs):
        if not cls._instance:
            cls._instance = super(SingletonModelLoader, cls).__new__(cls, *args, **kwargs)
        return cls._instance

    def __init__(self):
        if not hasattr(self, "inferencer"):
            self.inferencer = Inferencer(local_run=True)
        if not hasattr(self, "pipeline"):
            self.pipeline = Pipeline(self.inferencer)


# fast track
class FastTrack:
    def __init__(self, model_loader):
        self.pipeline: PipelineInterface = model_loader.pipeline

    def segment_to_xml(self, image, radio_button_choices):
        gr.Info("Running HTR-pipeline")
        xml_xml = "page_xml.xml"
        xml_txt = "page_txt.txt"

        if os.path.exists(f"./{xml_xml}"):
            os.remove(f"./{xml_xml}")

        rendered_xml = self.pipeline.running_htr_pipeline(image)

        with open(xml_xml, "w") as f:
            f.write(rendered_xml)

        xml_img = self.visualize_xml_and_return_txt(image, xml_txt)
        returned_file_extension = self.file_extenstion_to_return(radio_button_choices, xml_xml, xml_txt)

        return xml_img, returned_file_extension, gr.update(visible=True)

    def file_extenstion_to_return(self, radio_button_choices, xml_xml, xml_txt):
        if len(radio_button_choices) < 2:
            if radio_button_choices[0] == "Txt":
                returned_file_extension = xml_txt
            else:
                returned_file_extension = xml_xml
        else:
            returned_file_extension = [xml_txt, xml_xml]
        return returned_file_extension

    def segment_to_xml_api(self, image):
        rendered_xml = self.pipeline.running_htr_pipeline(image)
        return rendered_xml

    def visualize_xml_and_return_txt(self, img, xml_txt):
        xml_img = self.pipeline.visualize_xml(img)

        if os.path.exists(f"./{xml_txt}"):
            os.remove(f"./{xml_txt}")

        self.pipeline.parse_xml_to_txt()

        return xml_img


# Custom track
class CustomTrack:
    def __init__(self, model_loader):
        self.inferencer: InferencerInterface = model_loader.inferencer

    @gradio_info("Running Segment Region")
    def region_segment(self, image, pred_score_threshold, containments_treshold):
        predicted_regions, regions_cropped_ordered, _, _ = self.inferencer.predict_regions(
            image, pred_score_threshold, containments_treshold
        )
        return predicted_regions, regions_cropped_ordered, gr.update(visible=False), gr.update(visible=True)

    @gradio_info("Running Segment Line")
    def line_segment(self, image, pred_score_threshold, containments_threshold):
        predicted_lines, lines_cropped_ordered, _ = self.inferencer.predict_lines(
            image, pred_score_threshold, containments_threshold
        )
        return (
            predicted_lines,
            image,
            lines_cropped_ordered,
            lines_cropped_ordered,  #
            lines_cropped_ordered,  # temp_gallery
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=True),
        )

    def transcribe_text(self, df, images):
        gr.Info("Running Transcribe Lines")
        transcription_temp_list_with_score = []
        mapping_dict = {}

        total_images = len(images)
        current_index = 0

        bool_to_show_placeholder = gr.update(visible=True)
        bool_to_show_control_results_transcribe = gr.update(visible=False)

        for image in images:
            current_index += 1

            if current_index == total_images:
                bool_to_show_control_results_transcribe = gr.update(visible=True)
                bool_to_show_placeholder = gr.update(visible=False)

            transcribed_text, prediction_score_from_htr = self.inferencer.transcribe(image)
            transcription_temp_list_with_score.append((transcribed_text, prediction_score_from_htr))

            df_trans_explore = pd.DataFrame(
                transcription_temp_list_with_score, columns=["Transcribed text", "Pred score"]
            )

            mapping_dict[transcribed_text] = image

            yield df_trans_explore[
                ["Transcribed text"]
            ], df_trans_explore, mapping_dict, bool_to_show_control_results_transcribe, bool_to_show_placeholder

    def get_select_index_image(self, images_from_gallery, evt: gr.SelectData):
        return images_from_gallery[evt.index]["name"]

    def get_select_index_df(self, transcribed_text_df_finish, mapping_dict, evt: gr.SelectData):
        df_list = transcribed_text_df_finish["Transcribed text"].tolist()
        key_text = df_list[evt.index[0]]
        sorted_image = mapping_dict[key_text]
        new_first = [sorted_image]
        new_list = [img for txt, img in mapping_dict.items() if txt != key_text]
        new_first.extend(new_list)
        return new_first, key_text

    def download_df_to_txt(self, transcribed_df):
        text_in_list = transcribed_df["Transcribed text"].tolist()

        file_name = "./transcribed_text.txt"
        text_file = open(file_name, "w")

        for text in text_in_list:
            text_file.write(text + "\n")
        text_file.close()

        return file_name, gr.update(visible=True)

    # def transcribe_text_another_model(self, df, images):
    #     transcription_temp_list = []
    #     for image in images:
    #         transcribed_text = inferencer.transcribe_different_model(image)
    #         transcription_temp_list.append(transcribed_text)
    #         df_trans = pd.DataFrame(transcription_temp_list, columns=["Transcribed_text"])
    #         yield df_trans, df_trans, gr.update(visible=False)


if __name__ == "__main__":
    pass