Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,927 Bytes
5e081d3 60d8ae5 5f891d2 5e081d3 60d8ae5 5e081d3 ad688d5 3bc2cfb 5e081d3 6baad51 60d8ae5 44c7f77 8d18f89 c115883 ad688d5 c115883 1e41501 ae4b490 19cd755 60d8ae5 ae4b490 c115883 d3fc046 c115883 ad688d5 c48501f c115883 3bc2cfb c115883 8d18f89 60d8ae5 c115883 d3fc046 c115883 8d18f89 c115883 8d18f89 c115883 8d18f89 6baad51 c115883 c1fbcc2 3bc2cfb ae4b490 0658a37 ae4b490 0658a37 ae4b490 cb30282 ae4b490 cb30282 ae4b490 5f891d2 5e081d3 5f891d2 5e081d3 d3fc046 5f891d2 5e081d3 ea493bd 5f891d2 5e081d3 d3fc046 5e081d3 d3fc046 5e081d3 d3fc046 5e081d3 d3fc046 5e081d3 d3fc046 5e081d3 d3fc046 5f891d2 d3fc046 5f891d2 d3fc046 5e081d3 d3fc046 5e081d3 ea493bd 3bc2cfb 3521300 d3fc046 ae4b490 60d8ae5 5f891d2 4846384 5e081d3 688de79 d3fc046 ee5774c d3fc046 688de79 d3fc046 688de79 4846384 5e081d3 4846384 d3fc046 4846384 8d18f89 5862706 8d18f89 44c7f77 60d8ae5 0658a37 60d8ae5 8d18f89 a528e7a 8d18f89 8fd3b0d 3521300 0658a37 d3fc046 0658a37 cb30282 5e081d3 d3fc046 5f891d2 d3fc046 ad688d5 d3fc046 cb30282 5a98ee7 cb30282 ae4b490 5f891d2 d3fc046 5f891d2 a528e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import io
import logging
import os
import re
import time
import certifi
import fitz # PyMuPDF
import gradio as gr
import pycurl
import spaces
import yaml
from gradio_modal import Modal
from htrflow.pipeline.pipeline import Pipeline
from htrflow.pipeline.steps import init_step
from htrflow.volume.volume import Collection
from PIL import Image
from app.pipelines import PIPELINES
logger = logging.getLogger(__name__)
# Max number of images a user can upload at once
MAX_IMAGES = int(os.environ.get("MAX_IMAGES", 5))
# Setup the cache directory to point to the directory where the example images
# are located. The images must lay in the cache directory because otherwise they
# have to be reuploaded when drag-and-dropped to the input image widget.
GRADIO_CACHE = ".gradio_cache"
EXAMPLES_DIRECTORY = os.path.join(GRADIO_CACHE, "examples")
if os.environ.get("GRADIO_CACHE_DIR", GRADIO_CACHE) != GRADIO_CACHE:
os.environ["GRADIO_CACHE_DIR"] = GRADIO_CACHE
logger.warning("Setting GRADIO_CACHE_DIR to '%s' (overriding a previous value).")
class PipelineWithProgress(Pipeline):
@classmethod
def from_config(cls, config: dict[str, str]):
"""Init pipeline from config, ensuring the correct subclass is instantiated."""
return cls(
[
init_step(step["step"], step.get("settings", {}))
for step in config["steps"]
]
)
def run(self, collection, start=0, progress=None):
"""
Run pipeline on collection with Gradio progress support.
If progress is provided, it updates the Gradio progress bar during execution.
"""
total_steps = len(self.steps[start:])
for i, step in enumerate(self.steps[start:]):
step_name = f"{step} (step {start + i + 1} / {total_steps})"
try:
progress((i + 1) / total_steps, desc=f"Running {step_name}")
collection = step.run(collection)
except Exception:
if self.pickle_path:
gr.Error(
f"HTRflow: Pipeline failed on step {step_name}. A backup collection is saved at {self.pickle_path}"
)
else:
gr.Error(
f"HTRflow: Pipeline failed on step {step_name}",
)
raise
return collection
def pdf_to_images(pdf_path):
"""
Convert a PDF file to a list of PIL Image objects using PyMuPDF.
Extracts full-resolution images with no DPI adjustment.
Args:
pdf_path (str): Path to the PDF file
Returns:
list: List of PIL Image objects
"""
# Open the PDF
pdf_document = fitz.open(pdf_path)
# List to store the images
images = []
# Iterate through each page
for page_num in range(len(pdf_document)):
# Get the page
page = pdf_document[page_num]
# Get the pixmap at default resolution
pixmap = page.get_pixmap(alpha=False)
# Convert pixmap to PIL Image
img_data = pixmap.tobytes("jpeg")
img = Image.open(io.BytesIO(img_data))
# Add the image to our list
images.append(img)
# Close the PDF
pdf_document.close()
return images
@spaces.GPU
def run_htrflow(custom_template_yaml, batch_image_gallery, progress=gr.Progress()):
"""
Executes the HTRflow pipeline based on the provided YAML configuration and batch images.
Args:
custom_template_yaml (str): YAML string specifying the HTRflow pipeline configuration.
batch_image_gallery (list): List of uploaded images to process in the pipeline.
Returns:
tuple: A collection of processed items, list of exported file paths, and a Gradio update object.
"""
if custom_template_yaml is None or len(custom_template_yaml) < 1:
gr.Warning("HTRflow: Please insert a HTRflow-yaml template")
try:
config = yaml.safe_load(custom_template_yaml)
except Exception as e:
gr.Warning(f"HTRflow: Error loading YAML configuration: {e}")
return gr.skip()
progress(0, desc="HTRflow: Starting")
time.sleep(0.3)
if batch_image_gallery is None:
gr.Warning("HTRflow: You must upload atleast 1 image or more")
images = [temp_img[0] for temp_img in batch_image_gallery]
collection = Collection(images)
pipe = PipelineWithProgress.from_config(config)
gr.Info(
f"HTRflow: processing {len(images)} {'image' if len(images) == 1 else 'images'}."
)
progress(0.1, desc="HTRflow: Processing")
collection.label = "demo_output"
collection = pipe.run(collection, progress=progress)
progress(1, desc="HTRflow: Finish, redirecting to 'Results tab'")
time.sleep(2)
gr.Info("Completed succesfully ✨")
yield collection, gr.skip()
def get_pipeline_description(pipeline: str) -> str:
"""
Get the description of the given pipeline
"""
return PIPELINES[pipeline]["description"]
def get_yaml(pipeline: str) -> str:
"""
Get the yaml file for the given pipeline
Args:
pipeline: Name of pipeline (must be a key in the PIPELINES directory)
"""
with open(PIPELINES[pipeline]["file"], "r") as f:
pipeline = f.read()
return pipeline
def all_example_images() -> list[str]:
"""
Get paths to all example images.
"""
examples = []
for pipeline in PIPELINES.values():
for example in pipeline.get("examples", []):
examples.append(os.path.join(EXAMPLES_DIRECTORY, example))
return examples
def get_selected_example_image(event: gr.SelectData) -> str:
"""
Get path to the selected example image.
"""
return [event.value["image"]["path"]]
def get_selected_example_pipeline(event: gr.SelectData) -> str | None:
"""
Get the name of the pipeline that corresponds to the selected image.
"""
for name, details in PIPELINES.items():
if event.value["image"]["orig_name"] in details.get("examples", []):
return name
def get_image_from_image_id(image_id):
return [f"https://lbiiif.riksarkivet.se/arkis!{image_id}/full/max/0/default.jpg"]
# def get_images_from_iiif_manifest(iiif_manifest_url):
# """
# Read all images from a v2/v3 IIIF manifest.
# Arguments:
# manifest: IIIF manifest
# height: Max height of returned images.
# """
# try:
# response = requests.get(iiif_manifest_url, timeout=5)
# response.raise_for_status()
# except (requests.HTTPError, requests.ConnectionError) as e:
# gr.Error(f"Could not fetch IIIF manifest from {iiif_manifest_url} ({e})")
# return
# # Hacky solution to get all images regardless of API version - treat
# # the manifest as a string and match everything that looks like an IIIF
# # image URL.
# manifest = response.text
# pattern = r'(?P<identifier>https?://[^"\s]*)/(?P<region>[^"\s]*?)/(?P<size>[^"\s]*?)/(?P<rotation>!?\d*?)/(?P<quality>[^"\s]*?)\.(?P<format>jpg|tif|png|gif|jp2|pdf|webp)'
# height= 1200
# images = set() # create a set to eliminate duplicates (e.g. thumbnails and fullsize images)
# for match in re.findall(pattern, manifest):
# identifier, _, _, _, _, format_ = match
# images.add(f"{identifier}/full/{height},/0/default.{format_}")
# return sorted(images)
def get_images_from_iiif_manifest(iiif_manifest_url, max_images=20, height=1200):
"""
Read images from a v2/v3 IIIF manifest, limited to max_images.
Arguments:
iiif_manifest_url: URL to IIIF manifest
height: Max height of returned images
max_images: Maximum number of images to return (default: 20)
"""
try:
buffer = io.BytesIO()
c = pycurl.Curl()
c.setopt(c.URL, iiif_manifest_url)
c.setopt(c.WRITEDATA, buffer)
c.setopt(c.CAINFO, certifi.where())
c.setopt(c.FOLLOWLOCATION, 1)
c.setopt(c.MAXREDIRS, 5)
c.setopt(c.CONNECTTIMEOUT, 5)
c.setopt(c.TIMEOUT, 10)
c.setopt(c.NOSIGNAL, 1)
c.setopt(c.USERAGENT, "curl/7.68.0")
c.perform()
http_code = c.getinfo(c.RESPONSE_CODE)
if http_code != 200:
raise Exception(f"HTTP Error: {http_code}")
manifest = buffer.getvalue().decode("utf-8")
c.close()
except pycurl.error as e:
error_code, error_msg = e.args
raise Exception(
f"Could not fetch IIIF manifest from {iiif_manifest_url} ({error_msg})"
)
# Hacky solution to get all images regardless of API version - treat
# the manifest as a string and match everything that looks like an IIIF
# image URL.
pattern = r'(?P<identifier>https?://[^"\s]*)/(?P<region>[^"\s]*?)/(?P<size>[^"\s]*?)/(?P<rotation>!?\d*?)/(?P<quality>[^"\s]*?)\.(?P<format>jpg|tif|png|gif|jp2|pdf|webp)'
images = (
set()
) # create a set to eliminate duplicates (e.g. thumbnails and fullsize images)
for match in re.findall(pattern, manifest):
identifier, _, _, _, _, format_ = match
images.add(f"{identifier}/full/{height},/0/default.{format_}")
# Stop adding images if we've reached the maximum
if len(images) >= max_images:
break
# Sort and limit the results to max_images
return sorted(images)[:max_images], gr.update(visible=True)
with gr.Blocks() as submit:
gr.Markdown("# Upload")
gr.Markdown(
"Select or upload the image you want to transcribe. Most common image formats are supported and you can upload max 5 images at a time in this hosted demo."
)
collection_submit_state = gr.State()
with gr.Row(equal_height=True):
with gr.Column(scale=2):
batch_image_gallery = gr.Gallery(
file_types=["image"],
label="Image to transcribe",
interactive=True,
object_fit="scale-down",
)
with gr.Column(scale=1, variant="panel", elem_classes="panel-with-border"):
with gr.Tabs():
with gr.Tab("Examples"):
examples = gr.Gallery(
all_example_images(),
show_label=False,
interactive=False,
allow_preview=False,
object_fit="scale-down",
min_width=250,
height="100%",
columns=4,
container=False,
)
with gr.Tab("Image ID"):
image_id = gr.Textbox(
label="Upload by image ID",
info=(
"Use any image from our digitized archives by pasting its image ID found in the "
"<a href='https://sok.riksarkivet.se/bildvisning/R0002231_00005' target='_blank'>image viewer</a>. "
"Press enter to submit."
),
placeholder="R0002231_00005",
)
with gr.Tab("IIIF Manifest"):
with gr.Group():
iiif_manifest_url = gr.Textbox(
label="IIIF Manifest",
info=(
"Use an image from a IIIF manifest by pasting a IIIF manifest URL. Press enter to submit."
),
placeholder="",
scale=0,
)
max_images_iiif_manifest = gr.Number(
value=20,
min_width=50,
scale=0,
label="Number of image to return from IIIF manifest",
minimum=1,
visible=False,
)
iiif_gallery = gr.Gallery(
interactive=False,
columns=4,
allow_preview=False,
container=False,
show_label=False,
object_fit="scale-down",
)
with gr.Tab("URL"):
image_url = gr.Textbox(
label="Image URL",
info="Upload an image by pasting its URL.",
placeholder="https://example.com/image.jpg",
)
with gr.Tab("PDF"):
pdf_file = gr.File(label="PDF", file_types=[".pdf"])
pdf_gallery = gr.Gallery(
interactive=False,
columns=4,
allow_preview=False,
container=False,
show_label=False,
object_fit="scale-down",
)
with gr.Column(variant="panel", elem_classes="panel-with-border"):
gr.Markdown("## Settings")
gr.Markdown(
"Select a pipeline that best matches your image. The pipeline determines the processing workflow optimized for different handwritten text recognition tasks. "
"If you select an example image, a suitable pipeline will be preselected automatically. However, you can edit the pipeline if you need to customize it further. "
"Choosing the right pipeline significantly improves transcription quality. "
)
with gr.Row():
with gr.Column(scale=0):
pipeline_dropdown = gr.Dropdown(
PIPELINES,
container=False,
min_width=240,
scale=0,
elem_classes="pipeline-dropdown",
)
with gr.Column(scale=0, min_width=100):
edit_pipeline_button = gr.Button("Edit", scale=0)
with gr.Column(scale=3):
progess_bar = gr.Textbox(visible=False, show_label=False)
with gr.Column(scale=0, min_width=20):
pass
pipeline_description = gr.HTML(
value=get_pipeline_description,
inputs=pipeline_dropdown,
elem_classes="pipeline-info",
padding=False,
)
with Modal(visible=False) as edit_pipeline_modal:
gr.Markdown(
"""
## Edit Pipeline
The code snippet below is a YAML file that the HTRflow app uses to process the image. If you have chosen an
image from the "Examples" section, the YAML is already a pre-made template tailored to fit the example image.
Edit pipeline if needed:
"""
)
custom_template_yaml = gr.Code(
value=get_yaml,
inputs=pipeline_dropdown,
language="yaml",
container=False,
)
url = "https://ai-riksarkivet.github.io/htrflow/latest/getting_started/pipeline.html#example-pipelines"
gr.HTML(
f'See the <a href="{url}">documentation</a> for a detailed description on how to customize HTRflow pipelines.',
padding=False,
elem_classes="pipeline-help",
)
with gr.Row():
run_button = gr.Button("Run HTR", variant="primary", scale=0, min_width=200)
@batch_image_gallery.upload(
inputs=batch_image_gallery,
outputs=[batch_image_gallery],
)
def validate_images(images):
if len(images) > MAX_IMAGES:
gr.Warning(f"Maximum images you can upload is set to: {MAX_IMAGES}")
return gr.update(value=None)
return images
image_id.submit(get_image_from_image_id, image_id, batch_image_gallery).then(
fn=lambda: "Swedish - Spreads", outputs=pipeline_dropdown
)
iiif_manifest_url.submit(
get_images_from_iiif_manifest,
[iiif_manifest_url, max_images_iiif_manifest],
[iiif_gallery, max_images_iiif_manifest],
)
image_url.submit(lambda url: [url], image_url, batch_image_gallery)
pdf_file.upload(
lambda imgs: pdf_to_images(imgs), inputs=pdf_file, outputs=pdf_gallery
)
run_button.click(
fn=run_htrflow,
inputs=[custom_template_yaml, batch_image_gallery],
outputs=[collection_submit_state, batch_image_gallery],
)
examples.select(get_selected_example_image, None, batch_image_gallery)
examples.select(get_selected_example_pipeline, None, pipeline_dropdown)
iiif_gallery.select(get_selected_example_image, None, batch_image_gallery)
pdf_gallery.select(get_selected_example_image, None, batch_image_gallery)
edit_pipeline_button.click(lambda: Modal(visible=True), None, edit_pipeline_modal)
|