Spaces:
Running
on
T4
Running
on
T4
import os | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from src.htr_pipeline.inferencer import Inferencer, InferencerInterface | |
from src.htr_pipeline.pipeline import Pipeline, PipelineInterface | |
from src.htr_pipeline.utils.helper import gradio_info | |
class SingletonModelLoader: | |
_instance = None | |
def __new__(cls, *args, **kwargs): | |
if not cls._instance: | |
cls._instance = super(SingletonModelLoader, cls).__new__(cls, *args, **kwargs) | |
return cls._instance | |
def __init__(self): | |
if not hasattr(self, "inferencer"): | |
self.inferencer = Inferencer(local_run=True) | |
if not hasattr(self, "pipeline"): | |
self.pipeline = Pipeline(self.inferencer) | |
def handling_callback_stop_inferencer(): | |
from src.htr_pipeline.utils import pipeline_inferencer | |
pipeline_inferencer.terminate = False | |
# fast track | |
class FastTrack: | |
def __init__(self, model_loader): | |
self.pipeline: PipelineInterface = model_loader.pipeline | |
def segment_to_xml(self, image, radio_button_choices): | |
handling_callback_stop_inferencer() | |
gr.Info("Excuting HTR on image") | |
xml_xml = "page_xml.xml" | |
xml_txt = "page_txt.txt" | |
if os.path.exists(f"./{xml_xml}"): | |
os.remove(f"./{xml_xml}") | |
rendered_xml = self.pipeline.running_htr_pipeline(image) | |
with open(xml_xml, "w") as f: | |
f.write(rendered_xml) | |
if os.path.exists(f"./{xml_txt}"): | |
os.remove(f"./{xml_txt}") | |
self.pipeline.parse_xml_to_txt() | |
returned_file_extension = self.file_extenstion_to_return(radio_button_choices, xml_xml, xml_txt) | |
return returned_file_extension, gr.update(visible=True) | |
def visualize_image_viewer(self, image): | |
xml_img, text_polygon_dict = self.pipeline.visualize_xml(image) | |
return xml_img, text_polygon_dict | |
def file_extenstion_to_return(self, radio_button_choices, xml_xml, xml_txt): | |
if len(radio_button_choices) < 2: | |
if radio_button_choices[0] == "Txt": | |
returned_file_extension = xml_txt | |
else: | |
returned_file_extension = xml_xml | |
else: | |
returned_file_extension = [xml_txt, xml_xml] | |
return returned_file_extension | |
def get_text_from_coords(self, text_polygon_dict, evt: gr.SelectData): | |
x, y = evt.index[0], evt.index[1] | |
for text, polygon_coords in text_polygon_dict.items(): | |
if ( | |
cv2.pointPolygonTest(np.array(polygon_coords), (x, y), False) >= 0 | |
): # >= 0 means on the polygon or inside | |
return text | |
def segment_to_xml_api(self, image): | |
rendered_xml = self.pipeline.running_htr_pipeline(image) | |
return rendered_xml | |
# Custom track | |
class CustomTrack: | |
def __init__(self, model_loader): | |
self.inferencer: InferencerInterface = model_loader.inferencer | |
def region_segment(self, image, pred_score_threshold, containments_treshold): | |
predicted_regions, regions_cropped_ordered, _, _ = self.inferencer.predict_regions( | |
image, pred_score_threshold, containments_treshold | |
) | |
return predicted_regions, regions_cropped_ordered, gr.update(visible=False), gr.update(visible=True) | |
def line_segment(self, image, pred_score_threshold, containments_threshold): | |
predicted_lines, lines_cropped_ordered, _ = self.inferencer.predict_lines( | |
image, pred_score_threshold, containments_threshold | |
) | |
return ( | |
predicted_lines, | |
image, | |
lines_cropped_ordered, | |
lines_cropped_ordered, # | |
lines_cropped_ordered, # temp_gallery | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
def transcribe_text(self, df, images): | |
gr.Info("Running Transcribe Lines") | |
transcription_temp_list_with_score = [] | |
mapping_dict = {} | |
total_images = len(images) | |
current_index = 0 | |
bool_to_show_placeholder = gr.update(visible=True) | |
bool_to_show_control_results_transcribe = gr.update(visible=False) | |
for image in images: | |
current_index += 1 | |
if current_index == total_images: | |
bool_to_show_control_results_transcribe = gr.update(visible=True) | |
bool_to_show_placeholder = gr.update(visible=False) | |
transcribed_text, prediction_score_from_htr = self.inferencer.transcribe(image) | |
transcription_temp_list_with_score.append((transcribed_text, prediction_score_from_htr)) | |
df_trans_explore = pd.DataFrame( | |
transcription_temp_list_with_score, columns=["Transcribed text", "Pred score"] | |
) | |
mapping_dict[transcribed_text] = image | |
yield df_trans_explore[ | |
["Transcribed text"] | |
], df_trans_explore, mapping_dict, bool_to_show_control_results_transcribe, bool_to_show_placeholder | |
def get_select_index_image(self, images_from_gallery, evt: gr.SelectData): | |
return images_from_gallery[evt.index]["name"] | |
def get_select_index_df(self, transcribed_text_df_finish, mapping_dict, evt: gr.SelectData): | |
df_list = transcribed_text_df_finish["Transcribed text"].tolist() | |
key_text = df_list[evt.index[0]] | |
sorted_image = mapping_dict[key_text] | |
new_first = [sorted_image] | |
new_list = [img for txt, img in mapping_dict.items() if txt != key_text] | |
new_first.extend(new_list) | |
return new_first, key_text | |
def download_df_to_txt(self, transcribed_df): | |
text_in_list = transcribed_df["Transcribed text"].tolist() | |
file_name = "./transcribed_text.txt" | |
text_file = open(file_name, "w") | |
for text in text_in_list: | |
text_file.write(text + "\n") | |
text_file.close() | |
return file_name, gr.update(visible=True) | |
# def transcribe_text_another_model(self, df, images): | |
# transcription_temp_list = [] | |
# for image in images: | |
# transcribed_text = inferencer.transcribe_different_model(image) | |
# transcription_temp_list.append(transcribed_text) | |
# df_trans = pd.DataFrame(transcription_temp_list, columns=["Transcribed_text"]) | |
# yield df_trans, df_trans, gr.update(visible=False) | |
if __name__ == "__main__": | |
pass | |