Spaces:
Running
on
Zero
Running
on
Zero
Borg93
commited on
Commit
·
0b8de4d
1
Parent(s):
fc13392
Update visualizer.py
Browse files- app/tabs/visualizer.py +46 -46
app/tabs/visualizer.py
CHANGED
@@ -1,75 +1,75 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
from htrflow.utils.draw import draw_polygons
|
6 |
from htrflow.utils import imgproc
|
7 |
-
import time
|
8 |
from htrflow.results import Segment
|
9 |
|
10 |
|
11 |
-
def
|
12 |
results = []
|
13 |
|
14 |
-
time.sleep(1)
|
15 |
-
|
16 |
total_steps = len(col.pages)
|
17 |
|
18 |
for page_idx, page_node in enumerate(col):
|
|
|
19 |
page_image = page_node.image.copy()
|
20 |
|
21 |
-
progress((page_idx + 1) / total_steps, desc=
|
22 |
-
|
23 |
-
lines = list(page_node.traverse(lambda node: node.is_line()))
|
24 |
-
|
25 |
-
recog_conf_values = {
|
26 |
-
i: list(zip(tr.texts, tr.scores)) if (tr := ln.text_result) else []
|
27 |
-
for i, ln in enumerate(lines)
|
28 |
-
}
|
29 |
-
|
30 |
-
recog_df = pd.DataFrame(
|
31 |
-
[
|
32 |
-
{"Transcription": text, "Confidence Score": f"{score:.4f}"}
|
33 |
-
for values in recog_conf_values.values()
|
34 |
-
for text, score in values
|
35 |
-
]
|
36 |
-
)
|
37 |
|
38 |
line_polygons = []
|
39 |
line_crops = []
|
40 |
-
|
41 |
-
seg: Segment = ln.data.get("segment")
|
42 |
-
if not seg:
|
43 |
-
continue
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
bbox = seg.bbox.move(page_node.coord) if page_node.coord else seg.bbox
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
annotated_page_node = np.clip(annotated_image, 0, 255).astype(np.uint8)
|
59 |
|
60 |
-
results.append(
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
}
|
67 |
-
)
|
68 |
|
69 |
return results
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
with gr.Blocks() as visualizer:
|
75 |
with gr.Column(variant="panel"):
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
+
import time
|
5 |
+
from collections import defaultdict
|
6 |
+
from typing import List, Dict, Any
|
7 |
+
|
8 |
+
from htrflow.volume.volume import Collection, ImageNode, PageNode
|
9 |
from htrflow.utils.draw import draw_polygons
|
10 |
from htrflow.utils import imgproc
|
|
|
11 |
from htrflow.results import Segment
|
12 |
|
13 |
|
14 |
+
def load_visualize_state_from_submit2_serial(col: Collection, progress):
|
15 |
results = []
|
16 |
|
|
|
|
|
17 |
total_steps = len(col.pages)
|
18 |
|
19 |
for page_idx, page_node in enumerate(col):
|
20 |
+
page_node.to_original_size()
|
21 |
page_image = page_node.image.copy()
|
22 |
|
23 |
+
progress((page_idx + 1) / total_steps, desc="Running Visualizer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
line_polygons = []
|
26 |
line_crops = []
|
27 |
+
recog_conf_values = {}
|
|
|
|
|
|
|
28 |
|
29 |
+
for i, node in enumerate(page_node.traverse(filter=lambda n: n.is_line())):
|
30 |
+
if node.polygon:
|
31 |
+
line_polygons.append(node.polygon)
|
|
|
32 |
|
33 |
+
try:
|
34 |
+
cropped_line_img = imgproc.crop(page_image, node.bbox)
|
35 |
+
cropped_line_img = np.clip(cropped_line_img, 0, 255).astype(np.uint8)
|
36 |
+
line_crops.append(cropped_line_img)
|
37 |
+
except Exception:
|
38 |
+
continue
|
39 |
|
40 |
+
if node.text_result:
|
41 |
+
recog_conf_values[i] = list(zip(
|
42 |
+
node.text_result.texts,
|
43 |
+
node.text_result.scores
|
44 |
+
))
|
45 |
+
|
46 |
+
annotated_image = draw_polygons(
|
47 |
+
image=page_image,
|
48 |
+
polygons=line_polygons,
|
49 |
+
color=Colors.BLUE,
|
50 |
+
thickness=3,
|
51 |
+
alpha=0.2
|
52 |
+
)
|
53 |
annotated_page_node = np.clip(annotated_image, 0, 255).astype(np.uint8)
|
54 |
|
55 |
+
results.append({
|
56 |
+
"page_image": page_node,
|
57 |
+
"annotated_page_node": annotated_page_node,
|
58 |
+
"line_crops": line_crops,
|
59 |
+
"recog_conf_values": _convert_conf_values_to_df(recog_conf_values),
|
60 |
+
})
|
|
|
|
|
61 |
|
62 |
return results
|
63 |
|
64 |
+
def _convert_conf_values_to_df(conf_values: Dict[int, List[tuple[str, float]]]) -> pd.DataFrame:
|
65 |
+
"""Convert recognition confidence values to a pandas DataFrame."""
|
66 |
+
return pd.DataFrame(
|
67 |
+
[
|
68 |
+
{"Transcription": text, "Confidence Score": f"{score:.4f}"}
|
69 |
+
for values in conf_values.values()
|
70 |
+
for text, score in values
|
71 |
+
]
|
72 |
+
)
|
73 |
|
74 |
with gr.Blocks() as visualizer:
|
75 |
with gr.Column(variant="panel"):
|