carpelan commited on
Commit
f965f30
·
1 Parent(s): 5cabe30

fixed .github/readme

Browse files
.github/README.md CHANGED
@@ -9,104 +9,31 @@ Please note that this is a demo application—not intended for production use—
9
  <img src="https://ai-riksarkivet.github.io/htrflow/latest/assets/background_htrflow_2.png" alt="HTRflow App Demo" width="80%">
10
  </p>
11
 
12
- ---
13
- <!-- https://ecotrust-canada.github.io/markdown-toc/ -->
14
- - [HTRflow_app](#htrflow-app)
15
- * [Overview](#overview)
16
- * [Guide](#guide)
17
- * [How to use app..](#how-to-use-app)
18
- * [Getting Started](#getting-started)
19
- + [Prerequisites](#prerequisites)
20
- + [Installation](#installation)
21
- + [Running the Application Locally](#running-the-application-locally)
22
- * [Running with Docker](#running-with-docker)
23
- + [Locally with Docker](#locally-with-docker)
24
- + [On Hugging Face Spaces](#on-hugging-face-spaces)
25
- * [Contributing](#contributing)
26
- * [License](#license)
27
-
28
-
29
  ---
30
 
31
  ## Guide
32
 
33
- The demo consist of 3 tabs: Upload, Results and Export. You navigate through the app by first uploading 1 or many images in
34
-
35
- Upload:
36
-
37
- Result:
38
-
39
- Export:
40
-
41
- ## Pipeline Configuration
42
-
43
- HTRflow powers the application's engine with a structured pipeline design pattern. This pattern uses declarative YAML schemas as blueprints to define step-by-step processing instructions. For detailed documentation, visit the [HTRflow Pipeline Guide](https://ai-riksarkivet.github.io/htrflow/latest/getting_started/pipeline.html#yaml).
44
-
45
- <p align="center">
46
- <img src="../app/assets/images/3_worker.png" alt="HTRflow Worker Pipeline" width="20%">
47
- </p>
48
-
49
- ### Understanding YAML Pipeline Templates
50
-
51
- The following series of images demonstrates how YAML pipeline templates function. Each template is designed for specific document types - the example below shows a template optimized for single-column running text, such as letters, notes, and individual pages.
52
-
53
- <p align="center">
54
- <img src="../app/assets/images/how_to_1.png" alt="YAML Template Structure" width="70%">
55
- </p>
56
-
57
- ### Pipeline Steps
58
-
59
- Each pipeline consists of sequential steps executed from top to bottom. In this example, we focus on two primary steps:
60
-
61
- 1. **Segmentation**: Identifies and extracts text lines from the image
62
- 2. **Text Recognition**: Performs Handwritten Text Recognition (HTR) on the segmented lines
63
-
64
- <p align="center">
65
- <img src="../app/assets/images/how_to_2.png" alt="Pipeline Steps Overview" width="50%">
66
- </p>
67
-
68
- ### Model Integration
69
-
70
- Models specified in the pipeline can be downloaded directly from the [Huggingface model hub](https://huggingface.co/models?library=htrflow). For a comprehensive list of supported models, refer to the [HTRflow Models Documentation](https://ai-riksarkivet.github.io/htrflow/latest/getting_started/models.html#models).
71
-
72
- > **Note**: For English text recognition, you'll need to specify an appropriate model ID, such as the [Microsoft TrOCR base handwritten model](https://huggingface.co/microsoft/trocr-base-handwritten).
73
-
74
- <p align="center">
75
- <img src="../app/assets/images/how_to_3.png" alt="Model Configuration" width="50%">
76
- </p>
77
-
78
- ### Processing Workflow
79
-
80
- #### Text Line Detection
81
- The following image illustrates the text line segmentation process:
82
-
83
- <p align="center">
84
- <img src="../app/assets/images/how_to_4.png" alt="Text Line Detection Process" width="90%">
85
- </p>
86
-
87
- #### Text Recognition
88
- After segmentation, the detected text lines are processed by the HTR component:
89
-
90
- <p align="center">
91
- <img src="../app/assets/images/how_to_5.png" alt="Text Recognition Process" width="80%">
92
- </p>
93
-
94
- #### Reading Order Determination
95
- The final pipeline step determines the reading order of the text. In this example, it applies a simple top-down ordering transformation:
96
-
97
- <p align="center">
98
- <img src="../app/assets/images/how_to_6.png" alt="Reading Order Determination" width="85%">
99
- </p>
100
 
 
 
 
 
 
101
 
 
 
102
 
 
 
103
 
 
104
 
105
  ## Development
106
 
107
  ### Prerequisites
108
 
109
- - **Python:** Version 3.7 or higher
110
  - **pip:** Python package installer
111
  - **(Optional) Docker:** For containerized deployment
112
  - **(Optional) Nvidia GPU:** For faster predictions..
@@ -159,15 +86,23 @@ Or, if you are developing and prefer an editable installation, run:
159
  uv pip install -e .
160
  ```
161
 
 
162
 
163
- ### Running the Application Locally
164
 
165
- Launch the Gradio demo by running:
166
 
167
  ```bash
168
  gradio app/main.py
169
  ```
170
 
 
 
 
 
 
 
 
 
171
  Then open your web browser and navigate to `http://localhost:7860` (or the address displayed in your terminal) to interact with the demo.
172
 
173
  ---
@@ -201,18 +136,6 @@ docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all \
201
 
202
  ---
203
 
204
-
205
- ## Contributing
206
-
207
- We welcome community contributions! If you’d like to contribute:
208
- 1. Fork the repository.
209
- 2. Create a feature branch (`git checkout -b feature/YourFeature`).
210
- 3. Commit your changes (`git commit -m 'Add some feature'`).
211
- 4. Push to your branch (`git push origin feature/YourFeature`).
212
- 5. Open a pull request.
213
-
214
- ---
215
-
216
  ## License
217
 
218
  This project is open source. See the [LICENSE](./LICENSE) file for details.
 
9
  <img src="https://ai-riksarkivet.github.io/htrflow/latest/assets/background_htrflow_2.png" alt="HTRflow App Demo" width="80%">
10
  </p>
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  ## Guide
15
 
16
+ This demo consists of three tabs: **Upload**, **Results**, and **Export** and uses [HTRflow](https://ai-riksarkivet.github.io/htrflow/latest/index.html) as backend
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ 1. **Upload Tab:**
19
+ - **Upload Images:** Start in the Upload tab by adding one or multiple images.
20
+ - **Fetch Images:** Alternatively, you can retrieve images from the [Riksarkivet IIIF server](https://github.com/Riksarkivet/dataplattform/wiki/IIIF).
21
+ - **Choose a Template:** Select a template that matches your material. For more details, see the [HTRflow guide](https://ai-riksarkivet.github.io/htrflow/latest/getting_started/pipeline.html).
22
+ - **Submit:** Click **Submit** to start the HTR job. The HTRflow backend will then process your images and generate a [Document Model](https://ai-riksarkivet.github.io/htrflow/latest/getting_started/document_model.html).
23
 
24
+ 2. **Results Tab:**
25
+ - This tab displays the updated state of the Document Model created from your submission. Your uploaded images and chosen template drive how the document is rendered and visualized in real time.
26
 
27
+ 3. **Export Tab:**
28
+ - Use the Export tab to serialize and export the Document Model. Here, you can select the output format and choose name of the files that meets your needs.
29
 
30
+ ---
31
 
32
  ## Development
33
 
34
  ### Prerequisites
35
 
36
+ - **Python:** Version 3.10 or higher
37
  - **pip:** Python package installer
38
  - **(Optional) Docker:** For containerized deployment
39
  - **(Optional) Nvidia GPU:** For faster predictions..
 
86
  uv pip install -e .
87
  ```
88
 
89
+ #### 6. Running the Application Locally (dev)
90
 
 
91
 
92
+ For "hot reload" when developing, launch the Gradio demo by running:
93
 
94
  ```bash
95
  gradio app/main.py
96
  ```
97
 
98
+ ### Running the Application
99
+
100
+ Follow [Installation](#installation) and launch the Gradio demo by running:
101
+
102
+ ```bash
103
+ uv run app/main.py
104
+ ```
105
+
106
  Then open your web browser and navigate to `http://localhost:7860` (or the address displayed in your terminal) to interact with the demo.
107
 
108
  ---
 
136
 
137
  ---
138
 
 
 
 
 
 
 
 
 
 
 
 
 
139
  ## License
140
 
141
  This project is open source. See the [LICENSE](./LICENSE) file for details.
Dockerfile CHANGED
@@ -65,4 +65,4 @@ USER appuser
65
  EXPOSE 7860
66
 
67
  # Command to run the application
68
- CMD ["uv", "run", "python", "app/main.py"]
 
65
  EXPOSE 7860
66
 
67
  # Command to run the application
68
+ CMD ["uv", "run", "app/main.py"]
app/assets/images/how_to_1.png DELETED

Git LFS Details

  • SHA256: ef76982df58855265b8f06831a6a8bd085be06b32587a615446bc8649c8fe722
  • Pointer size: 131 Bytes
  • Size of remote file: 432 kB
app/assets/images/how_to_2.png DELETED

Git LFS Details

  • SHA256: e1949d45f28de938d2b74cdd04cc476c215d26718efc33ab7018c15bc9101348
  • Pointer size: 131 Bytes
  • Size of remote file: 146 kB
app/assets/images/how_to_3.png DELETED

Git LFS Details

  • SHA256: 6334d825cab1fc9abc80f0ea70ce25913e67ead3712358b6e5e139642b059003
  • Pointer size: 131 Bytes
  • Size of remote file: 146 kB
app/assets/images/how_to_4.png DELETED

Git LFS Details

  • SHA256: 9100e54608da3cfb1779b02fd5a8891f4146092eba0df58b1155134a31baf74d
  • Pointer size: 131 Bytes
  • Size of remote file: 647 kB
app/assets/images/how_to_5.png DELETED

Git LFS Details

  • SHA256: bd0a3ed8e0334c7fbc384f8b00ed71649187bee16ada90e7a8386b41ad1c7641
  • Pointer size: 131 Bytes
  • Size of remote file: 178 kB
app/assets/images/how_to_6.png DELETED

Git LFS Details

  • SHA256: 0b7b375abee3e2c51b997ba5d342b358946c6be9abcd03bb51c99a00b4c7cd46
  • Pointer size: 131 Bytes
  • Size of remote file: 358 kB