Karin0616
commited on
Commit
·
6c3a687
1
Parent(s):
115e7ad
last
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ model = TFSegformerForSemanticSegmentation.from_pretrained(
|
|
15 |
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
|
16 |
)
|
17 |
|
18 |
-
def
|
19 |
|
20 |
return [
|
21 |
[204, 87, 92], # road (Reddish)
|
@@ -46,7 +46,7 @@ with open(r'labels.txt', 'r') as fp:
|
|
46 |
for line in fp:
|
47 |
labels_list.append(line[:-1])
|
48 |
|
49 |
-
colormap = np.asarray(
|
50 |
|
51 |
def label_to_color_image(label):
|
52 |
if label.ndim != 2:
|
@@ -110,11 +110,11 @@ demo = gr.Interface(fn=sepia,
|
|
110 |
inputs=gr.Image(shape=(564,846)),
|
111 |
outputs=['plot'],
|
112 |
live=True,
|
113 |
-
examples=["city1.jpg","city2.jpg","city3.jpg"],
|
114 |
allow_flagging='never',
|
115 |
title="City Image Segmentation Model",
|
116 |
theme="huggingfacedark",
|
117 |
-
description="This model is a high-performance city image segmentation model based on the Segformer architecture provided by NVIDIA. Specifically, the 'segformer-b5' model, trained on the Cityscapes dataset, excels at performing intricate segmentation on high-resolution images of 1024x1024 pixels. It accurately identifies various urban elements such as roads, buildings, pedestrians, providing visually rich segmentation results
|
118 |
|
119 |
)
|
120 |
|
|
|
15 |
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
|
16 |
)
|
17 |
|
18 |
+
def palette():
|
19 |
|
20 |
return [
|
21 |
[204, 87, 92], # road (Reddish)
|
|
|
46 |
for line in fp:
|
47 |
labels_list.append(line[:-1])
|
48 |
|
49 |
+
colormap = np.asarray(palette())
|
50 |
|
51 |
def label_to_color_image(label):
|
52 |
if label.ndim != 2:
|
|
|
110 |
inputs=gr.Image(shape=(564,846)),
|
111 |
outputs=['plot'],
|
112 |
live=True,
|
113 |
+
examples=["city1.jpg","city2.jpg","city3.jpg","city4.jpg","city5.jpg"],
|
114 |
allow_flagging='never',
|
115 |
title="City Image Segmentation Model",
|
116 |
theme="huggingfacedark",
|
117 |
+
description="This model is a high-performance city image segmentation model based on the Segformer architecture provided by NVIDIA. Specifically, the 'segformer-b5' model, trained on the Cityscapes dataset, excels at performing intricate segmentation on high-resolution images of 1024x1024 pixels. It accurately identifies various urban elements such as roads, buildings, pedestrians, providing visually rich segmentation results.This is a machine learning activity project at Kyunggi University.",
|
118 |
|
119 |
)
|
120 |
|
city4.jpg
ADDED
![]() |
city5.jpg
ADDED
![]() |