Karin0616
commited on
Commit
ยท
86b082c
1
Parent(s):
2bee93c
theme
Browse files
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
from matplotlib import gridspec
|
5 |
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
@@ -16,28 +14,26 @@ model = TFSegformerForSemanticSegmentation.from_pretrained(
|
|
16 |
)
|
17 |
|
18 |
def ade_palette():
|
19 |
-
|
20 |
return [
|
21 |
-
[204, 87, 92],
|
22 |
[112, 185, 212], # sidewalk (Blue)
|
23 |
[196, 160, 122], # building (Brown)
|
24 |
[106, 135, 242], # wall (Light Blue)
|
25 |
-
[91, 192, 222],
|
26 |
[255, 192, 203], # pole (Pink)
|
27 |
[176, 224, 230], # traffic light (Light Blue)
|
28 |
-
[222, 49, 99],
|
29 |
-
[139, 69, 19],
|
30 |
-
[255, 0, 0],
|
31 |
-
[0, 0, 255],
|
32 |
[255, 228, 181], # person (Peach)
|
33 |
-
[128, 0, 0],
|
34 |
-
[0, 128, 0],
|
35 |
-
[255, 99, 71],
|
36 |
-
[0, 255, 0],
|
37 |
-
[128, 0, 128],
|
38 |
-
[255, 255, 0],
|
39 |
-
[128, 0, 128]
|
40 |
-
|
41 |
]
|
42 |
|
43 |
labels_list = []
|
@@ -77,7 +73,14 @@ def draw_plot(pred_img, seg):
|
|
77 |
ax.tick_params(width=0.0, labelsize=25)
|
78 |
return fig
|
79 |
|
80 |
-
def sepia(input_img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
input_img = Image.fromarray(input_img)
|
82 |
|
83 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
@@ -87,38 +90,43 @@ def sepia(input_img):
|
|
87 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
88 |
logits = tf.image.resize(
|
89 |
logits, input_img.size[::-1]
|
90 |
-
)
|
91 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
92 |
|
93 |
color_seg = np.zeros(
|
94 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
95 |
-
)
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
-
# Show image + mask
|
100 |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
101 |
pred_img = pred_img.astype(np.uint8)
|
102 |
|
103 |
fig = draw_plot(pred_img, seg)
|
104 |
return fig
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from matplotlib import gridspec
|
3 |
import matplotlib.pyplot as plt
|
4 |
import numpy as np
|
|
|
14 |
)
|
15 |
|
16 |
def ade_palette():
|
|
|
17 |
return [
|
18 |
+
[204, 87, 92], # road (Reddish)
|
19 |
[112, 185, 212], # sidewalk (Blue)
|
20 |
[196, 160, 122], # building (Brown)
|
21 |
[106, 135, 242], # wall (Light Blue)
|
22 |
+
[91, 192, 222], # fence (Turquoise)
|
23 |
[255, 192, 203], # pole (Pink)
|
24 |
[176, 224, 230], # traffic light (Light Blue)
|
25 |
+
[222, 49, 99], # traffic sign (Red)
|
26 |
+
[139, 69, 19], # vegetation (Brown)
|
27 |
+
[255, 0, 0], # terrain (Red)
|
28 |
+
[0, 0, 255], # sky (Blue)
|
29 |
[255, 228, 181], # person (Peach)
|
30 |
+
[128, 0, 0], # rider (Maroon)
|
31 |
+
[0, 128, 0], # car (Green)
|
32 |
+
[255, 99, 71], # truck (Tomato)
|
33 |
+
[0, 255, 0], # bus (Lime)
|
34 |
+
[128, 0, 128], # train (Purple)
|
35 |
+
[255, 255, 0], # motorcycle (Yellow)
|
36 |
+
[128, 0, 128] # bicycle (Purple)
|
|
|
37 |
]
|
38 |
|
39 |
labels_list = []
|
|
|
73 |
ax.tick_params(width=0.0, labelsize=25)
|
74 |
return fig
|
75 |
|
76 |
+
def sepia(input_img, *label_buttons):
|
77 |
+
selected_color = None
|
78 |
+
for label, button_state in zip(labels_list, label_buttons):
|
79 |
+
if button_state:
|
80 |
+
label_index = labels_list.index(label)
|
81 |
+
selected_color = colormap[label_index]
|
82 |
+
break
|
83 |
+
|
84 |
input_img = Image.fromarray(input_img)
|
85 |
|
86 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
|
|
90 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
91 |
logits = tf.image.resize(
|
92 |
logits, input_img.size[::-1]
|
93 |
+
)
|
94 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
95 |
|
96 |
color_seg = np.zeros(
|
97 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
98 |
+
)
|
99 |
+
if selected_color:
|
100 |
+
label = colormap.index(selected_color)
|
101 |
+
color_seg[seg.numpy() == label, :] = selected_color
|
102 |
|
|
|
103 |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
104 |
pred_img = pred_img.astype(np.uint8)
|
105 |
|
106 |
fig = draw_plot(pred_img, seg)
|
107 |
return fig
|
108 |
|
109 |
+
# ๋ผ๋ฒจ ๋ฒํผ ์์ฑ
|
110 |
+
label_buttons = [gr.Button(label) for label in labels_list]
|
111 |
+
|
112 |
+
# Gradio ์ธํฐํ์ด์ค ์์ฑ
|
113 |
+
iface = gr.Interface(
|
114 |
+
fn=sepia,
|
115 |
+
inputs=[gr.Image(shape=(564, 846))] + label_buttons,
|
116 |
+
outputs="plot",
|
117 |
+
live=True,
|
118 |
+
examples=["city1.jpg", "city2.jpg", "city3.jpg"],
|
119 |
+
allow_flagging='never',
|
120 |
+
title="This is a machine learning activity project at Kyunggi University.",
|
121 |
+
theme="darkpeach",
|
122 |
+
css="""
|
123 |
+
body{
|
124 |
+
background-color: dark;
|
125 |
+
color: white;
|
126 |
+
font-family: Arial, sans-serif;
|
127 |
+
}
|
128 |
+
"""
|
129 |
+
)
|
130 |
+
|
131 |
+
# Gradio ์ธํฐํ์ด์ค ์์
|
132 |
+
iface.launch()
|