Rishav-ctrl's picture
Update app.py
299d524 verified
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
# Use TFSMLayer to load the SavedModel
model = tf.keras.models.load_model("waste_sort_model.keras")
class_names = ["Non-Recyclable", "Recyclable"]
def classify_image(img):
"""Classify uploaded image as recyclable or non-recyclable."""
img = img.resize((150, 150)) # Resize to match model input size
img_array = np.array(img) / 255.0 # Normalize pixel values
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
predictions = model(img_array)
predicted_class = class_names[np.argmax(predictions)]
return f"Prediction: {predicted_class}"
# Define Gradio Interface
interface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs="text",
title="Waste Classification",
description="Upload an image of waste to classify as Recyclable or Non-Recyclable.",
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch(share=True)