Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
# Use TFSMLayer to load the SavedModel | |
model = tf.keras.models.load_model("waste_sort_model.keras") | |
class_names = ["Non-Recyclable", "Recyclable"] | |
def classify_image(img): | |
"""Classify uploaded image as recyclable or non-recyclable.""" | |
img = img.resize((150, 150)) # Resize to match model input size | |
img_array = np.array(img) / 255.0 # Normalize pixel values | |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
predictions = model(img_array) | |
predicted_class = class_names[np.argmax(predictions)] | |
return f"Prediction: {predicted_class}" | |
# Define Gradio Interface | |
interface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Waste Classification", | |
description="Upload an image of waste to classify as Recyclable or Non-Recyclable.", | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch(share=True) | |