Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load your trained model
|
7 |
+
model = load_model("waste_sort_model.h5")
|
8 |
+
class_names = ["Non-Recyclable", "Recyclable"]
|
9 |
+
|
10 |
+
def classify_image(img):
|
11 |
+
"""Classify uploaded image as recyclable or non-recyclable."""
|
12 |
+
img = img.resize((150, 150)) # Resize to match model input size
|
13 |
+
img_array = np.array(img) / 255.0 # Normalize pixel values
|
14 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
15 |
+
|
16 |
+
predictions = model.predict(img_array)
|
17 |
+
predicted_class = class_names[np.argmax(predictions)]
|
18 |
+
return f"Prediction: {predicted_class}"
|
19 |
+
|
20 |
+
# Define Gradio Interface
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=classify_image,
|
23 |
+
inputs=gr.Image(type="pil"),
|
24 |
+
outputs="text",
|
25 |
+
title="Waste Classification",
|
26 |
+
description="Upload an image of waste to classify as Recyclable or Non-Recyclable.",
|
27 |
+
)
|
28 |
+
|
29 |
+
# Launch the Gradio app
|
30 |
+
if __name__ == "__main__":
|
31 |
+
interface.launch()
|