Rishav-ctrl commited on
Commit
ad0bce8
·
verified ·
1 Parent(s): 2425251

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from tensorflow.keras.models import load_model
3
+ from tensorflow.keras.preprocessing import image
4
+ import numpy as np
5
+
6
+ # Load your trained model
7
+ model = load_model("waste_sort_model.h5")
8
+ class_names = ["Non-Recyclable", "Recyclable"]
9
+
10
+ def classify_image(img):
11
+ """Classify uploaded image as recyclable or non-recyclable."""
12
+ img = img.resize((150, 150)) # Resize to match model input size
13
+ img_array = np.array(img) / 255.0 # Normalize pixel values
14
+ img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
15
+
16
+ predictions = model.predict(img_array)
17
+ predicted_class = class_names[np.argmax(predictions)]
18
+ return f"Prediction: {predicted_class}"
19
+
20
+ # Define Gradio Interface
21
+ interface = gr.Interface(
22
+ fn=classify_image,
23
+ inputs=gr.Image(type="pil"),
24
+ outputs="text",
25
+ title="Waste Classification",
26
+ description="Upload an image of waste to classify as Recyclable or Non-Recyclable.",
27
+ )
28
+
29
+ # Launch the Gradio app
30
+ if __name__ == "__main__":
31
+ interface.launch()