File size: 10,437 Bytes
ed00004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
 * Copyright (c) 2022, salesforce.com, inc.
 * All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 * By Junnan Li
"""
import warnings

warnings.filterwarnings("ignore")

import os
from urllib.parse import urlparse

import torch
from hydra.utils import get_original_cwd
from timm.models.hub import download_cached_file
from torch import nn
from transformers import BertTokenizer

from src.model.med import BertConfig, BertLMHeadModel, BertModel
from src.model.vit import VisionTransformer, interpolate_pos_embed


class BLIP_Base(nn.Module):
    def __init__(
        self,
        med_config="configs/med_config.json",
        image_size=224,
        vit="base",
        vit_grad_ckpt=False,
        vit_ckpt_layer=0,
    ):
        """
        Args:
            med_config (str): path for the mixture of encoder-decoder model's configuration file
            image_size (int): input image size
            vit (str): model size of vision transformer
        """
        super().__init__()

        self.visual_encoder, vision_width = create_vit(
            vit, image_size, vit_grad_ckpt, vit_ckpt_layer
        )
        self.tokenizer = init_tokenizer()
        med_config = BertConfig.from_json_file(med_config)
        med_config.encoder_width = vision_width
        self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)

    def forward(self, image, caption, mode):
        assert mode in [
            "image",
            "text",
            "multimodal",
        ], "mode parameter must be image, text, or multimodal"
        text = self.tokenizer(caption, return_tensors="pt").to(image.device)

        if mode == "image":
            # return image features
            image_embeds = self.visual_encoder(image)
            return image_embeds

        elif mode == "text":
            # return text features
            text_output = self.text_encoder(
                text.input_ids,
                attention_mask=text.attention_mask,
                return_dict=True,
                mode="text",
            )
            return text_output.last_hidden_state

        elif mode == "multimodal":
            # return multimodel features
            image_embeds = self.visual_encoder(image)
            image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
                image.device
            )

            text.input_ids[:, 0] = self.tokenizer.enc_token_id
            output = self.text_encoder(
                text.input_ids,
                attention_mask=text.attention_mask,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )
            return output.last_hidden_state


class BLIP_Decoder(nn.Module):
    def __init__(
        self,
        med_config="configs/med_config.json",
        image_size=384,
        vit="base",
        vit_grad_ckpt=False,
        vit_ckpt_layer=0,
        prompt="a picture of ",
    ):
        """
        Args:
            med_config (str): path for the mixture of encoder-decoder model's configuration file
            image_size (int): input image size
            vit (str): model size of vision transformer
        """
        super().__init__()

        self.visual_encoder, vision_width = create_vit(
            vit, image_size, vit_grad_ckpt, vit_ckpt_layer
        )
        self.tokenizer = init_tokenizer()
        med_config = BertConfig.from_json_file(med_config)
        med_config.encoder_width = vision_width
        self.text_decoder = BertLMHeadModel(config=med_config)

        self.prompt = prompt
        self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1

    def forward(self, image, caption):
        image_embeds = self.visual_encoder(image)
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
            image.device
        )

        text = self.tokenizer(
            caption,
            padding="longest",
            truncation=True,
            max_length=40,
            return_tensors="pt",
        ).to(image.device)

        text.input_ids[:, 0] = self.tokenizer.bos_token_id

        decoder_targets = text.input_ids.masked_fill(
            text.input_ids == self.tokenizer.pad_token_id, -100
        )
        decoder_targets[:, : self.prompt_length] = -100

        decoder_output = self.text_decoder(
            text.input_ids,
            attention_mask=text.attention_mask,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            labels=decoder_targets,
            return_dict=True,
        )
        loss_lm = decoder_output.loss

        return loss_lm

    def generate(
        self,
        image,
        sample=False,
        num_beams=3,
        max_length=30,
        min_length=10,
        top_p=0.9,
        repetition_penalty=1.0,
    ):
        image_embeds = self.visual_encoder(image)

        if not sample:
            image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)

        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
            image.device
        )
        model_kwargs = {
            "encoder_hidden_states": image_embeds,
            "encoder_attention_mask": image_atts,
        }

        prompt = [self.prompt] * image.size(0)
        input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(
            image.device
        )
        input_ids[:, 0] = self.tokenizer.bos_token_id
        input_ids = input_ids[:, :-1]

        if sample:
            # nucleus sampling
            outputs = self.text_decoder.generate(
                input_ids=input_ids,
                max_length=max_length,
                min_length=min_length,
                do_sample=True,
                top_p=top_p,
                num_return_sequences=1,
                eos_token_id=self.tokenizer.sep_token_id,
                pad_token_id=self.tokenizer.pad_token_id,
                repetition_penalty=1.1,
                **model_kwargs,
            )
        else:
            # beam search
            outputs = self.text_decoder.generate(
                input_ids=input_ids,
                max_length=max_length,
                min_length=min_length,
                num_beams=num_beams,
                eos_token_id=self.tokenizer.sep_token_id,
                pad_token_id=self.tokenizer.pad_token_id,
                repetition_penalty=repetition_penalty,
                **model_kwargs,
            )

        captions = []
        for output in outputs:
            caption = self.tokenizer.decode(output, skip_special_tokens=True)
            captions.append(caption[len(self.prompt) :])
        return captions


def blip_decoder(pretrained="", **kwargs):
    model = BLIP_Decoder(**kwargs)
    if pretrained:
        model, msg = load_checkpoint(model, pretrained)
        assert len(msg.missing_keys) == 0
    return model


def blip_feature_extractor(pretrained="", **kwargs):
    model = BLIP_Base(**kwargs)
    if pretrained:
        model, msg = load_checkpoint(model, pretrained)
        assert len(msg.missing_keys) == 0
    return model


def init_tokenizer():
    try:
        bert_pth = os.path.join(get_original_cwd(), "bert-base-uncased")
        tokenizer = BertTokenizer.from_pretrained(bert_pth)
    except:
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

    tokenizer.add_special_tokens({"bos_token": "[DEC]"})
    tokenizer.add_special_tokens({"additional_special_tokens": ["[ENC]"]})
    tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
    return tokenizer


def create_vit(
    vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0
):
    assert vit in ["base", "large"], "vit parameter must be base or large"
    if vit == "base":
        vision_width = 768
        visual_encoder = VisionTransformer(
            img_size=image_size,
            patch_size=16,
            embed_dim=vision_width,
            depth=12,
            num_heads=12,
            use_grad_checkpointing=use_grad_checkpointing,
            ckpt_layer=ckpt_layer,
            drop_path_rate=0 or drop_path_rate,
        )
    elif vit == "large":
        vision_width = 1024
        visual_encoder = VisionTransformer(
            img_size=image_size,
            patch_size=16,
            embed_dim=vision_width,
            depth=24,
            num_heads=16,
            use_grad_checkpointing=use_grad_checkpointing,
            ckpt_layer=ckpt_layer,
            drop_path_rate=0.1 or drop_path_rate,
        )
    else:
        raise NotImplementedError
    return visual_encoder, vision_width


def is_url(url_or_filename):
    parsed = urlparse(url_or_filename)
    return parsed.scheme in ("http", "https")


def load_checkpoint(model, url_or_filename):
    if is_url(url_or_filename):
        cached_file = download_cached_file(
            url_or_filename, check_hash=False, progress=True
        )
        checkpoint = torch.load(cached_file, map_location="cpu")
    elif os.path.isfile(url_or_filename):
        checkpoint = torch.load(url_or_filename, map_location="cpu")
    else:
        raise RuntimeError(f"checkpoint {url_or_filename} is invalid")

    state_dict = checkpoint["model"]
    state_dict = remove_module(state_dict)

    state_dict["visual_encoder.pos_embed"] = interpolate_pos_embed(
        state_dict["visual_encoder.pos_embed"], model.visual_encoder
    )
    if "visual_encoder_m.pos_embed" in model.state_dict().keys():
        state_dict["visual_encoder_m.pos_embed"] = interpolate_pos_embed(
            state_dict["visual_encoder_m.pos_embed"], model.visual_encoder_m
        )
    for key in model.state_dict().keys():
        if key in state_dict.keys():
            if state_dict[key].shape != model.state_dict()[key].shape:
                del state_dict[key]

    msg = model.load_state_dict(state_dict, strict=False)
    print("load checkpoint from %s" % url_or_filename)
    return model, msg


def remove_module(state_dict):
    new_state_dict = {}
    for key in state_dict.keys():
        if key.startswith("module."):
            new_state_dict[key[7:]] = state_dict[key]
        else:
            new_state_dict[key] = state_dict[key]
    return new_state_dict