File size: 5,369 Bytes
ed00004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import datetime
import time
from collections import OrderedDict
from pathlib import Path

import einops
import numpy as np
import torch
import torch.nn.functional as F

from src.tools.files import json_dump


class TestCirr:
    def __init__(self):
        pass

    @staticmethod
    @torch.no_grad()
    def __call__(model, data_loader, fabric):
        model.eval()

        fabric.print("Computing features for test...")
        start_time = time.time()

        tar_img_feats = []
        query_feats = []
        pair_ids = []
        for ref_img, tar_feat, caption, pair_id, *_ in data_loader:
            pair_ids.extend(pair_id.cpu().numpy().tolist())

            device = ref_img.device

            ref_img_embs = model.visual_encoder(ref_img)
            ref_img_atts = torch.ones(ref_img_embs.size()[:-1], dtype=torch.long).to(
                device
            )

            text = model.tokenizer(
                caption,
                padding="longest",
                truncation=True,
                max_length=64,
                return_tensors="pt",
            ).to(device)

            # Shift encoder
            encoder_input_ids = text.input_ids.clone()
            encoder_input_ids[:, 0] = model.tokenizer.enc_token_id
            query_embs = model.text_encoder(
                encoder_input_ids,
                attention_mask=text.attention_mask,
                encoder_hidden_states=ref_img_embs,
                encoder_attention_mask=ref_img_atts,
                return_dict=True,
            )
            query_feat = query_embs.last_hidden_state[:, 0, :]
            query_feat = F.normalize(model.text_proj(query_feat), dim=-1)
            query_feats.append(query_feat.cpu())

            # Encode the target image
            tar_img_feats.append(tar_feat.cpu())

        pair_ids = torch.tensor(pair_ids, dtype=torch.long)
        query_feats = torch.cat(query_feats, dim=0)
        tar_img_feats = torch.cat(tar_img_feats, dim=0)

        if fabric.world_size > 1:
            # Gather tensors from every process
            query_feats = fabric.all_gather(query_feats)
            tar_img_feats = fabric.all_gather(tar_img_feats)
            pair_ids = fabric.all_gather(pair_ids)

            query_feats = einops.rearrange(query_feats, "d b e -> (d b) e")
            tar_img_feats = einops.rearrange(tar_img_feats, "d b e -> (d b) e")
            pair_ids = einops.rearrange(pair_ids, "d b -> (d b)")

        if fabric.global_rank == 0:
            pair_ids = pair_ids.cpu().numpy().tolist()

            assert len(query_feats) == len(pair_ids)
            img_ids = [data_loader.dataset.pairid2ref[pair_id] for pair_id in pair_ids]
            assert len(img_ids) == len(pair_ids)

            id2emb = OrderedDict()
            for img_id, tar_img_feat in zip(img_ids, tar_img_feats):
                if img_id not in id2emb:
                    id2emb[img_id] = tar_img_feat

            tar_feats = torch.stack(list(id2emb.values()), dim=0)
            sims_q2t = query_feats @ tar_feats.T

            # Create a mapping from pair_id to row index for faster lookup
            pairid2index = {pair_id: i for i, pair_id in enumerate(pair_ids)}

            # Create a mapping from target_id to column index for faster lookup
            tarid2index = {tar_id: j for j, tar_id in enumerate(id2emb.keys())}

            # Update the similarity matrix based on the condition
            for pair_id, query_feat in zip(pair_ids, query_feats):
                que_id = data_loader.dataset.pairid2ref[pair_id]
                if que_id in tarid2index:
                    sims_q2t[pairid2index[pair_id], tarid2index[que_id]] = -100
            sims_q2t = sims_q2t.cpu().numpy()

            total_time = time.time() - start_time
            total_time_str = str(datetime.timedelta(seconds=int(total_time)))
            print("Evaluation time {}".format(total_time_str))

            recalls = {}
            recalls["version"] = "rc2"
            recalls["metric"] = "recall"

            recalls_subset = {}
            recalls_subset["version"] = "rc2"
            recalls_subset["metric"] = "recall_subset"

            target_imgs = np.array(list(id2emb.keys()))

            assert len(sims_q2t) == len(pair_ids)
            for pair_id, query_sims in zip(pair_ids, sims_q2t):
                sorted_indices = np.argsort(query_sims)[::-1]

                query_id_recalls = list(target_imgs[sorted_indices][:50])
                query_id_recalls = [
                    str(data_loader.dataset.int2id[x]) for x in query_id_recalls
                ]
                recalls[str(pair_id)] = query_id_recalls

                members = data_loader.dataset.pairid2members[pair_id]
                query_id_recalls_subset = [
                    target
                    for target in target_imgs[sorted_indices]
                    if target in members
                ]
                query_id_recalls_subset = [
                    data_loader.dataset.int2id[x] for x in query_id_recalls_subset
                ][:3]
                recalls_subset[str(pair_id)] = query_id_recalls_subset

            json_dump(recalls, "recalls_cirr.json")
            json_dump(recalls_subset, "recalls_cirr_subset.json")

            print(f"Recalls saved in {Path.cwd()} as recalls_cirr.json")

        fabric.barrier()