File size: 4,908 Bytes
ed00004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import datetime
import time
from pathlib import Path

import einops
import numpy as np
import torch
import torch.nn.functional as F

from src.tools.files import json_dump


class TestWebVidCoVR:
    def __init__(self, remove_self_similarity=True):
        self.remove_self_similarity = remove_self_similarity

    @torch.no_grad()
    def __call__(self, model, data_loader, fabric):
        model.eval()

        fabric.print("Computing features for evaluation...")
        start_time = time.time()

        tar_img_feats = []
        query_feats = []
        captions = []
        pair_ids = []

        for ref_img, tar_feat, caption, pair_id, *_ in data_loader:
            pair_ids.extend(pair_id.cpu().numpy().tolist())
            captions.extend(caption)

            device = ref_img.device

            ref_img_embs = model.visual_encoder(ref_img)
            ref_img_atts = torch.ones(ref_img_embs.size()[:-1], dtype=torch.long).to(
                device
            )

            text = model.tokenizer(
                caption,
                padding="longest",
                truncation=True,
                max_length=64,
                return_tensors="pt",
            ).to(device)

            # Shift encoder
            encoder_input_ids = text.input_ids.clone()
            encoder_input_ids[:, 0] = model.tokenizer.enc_token_id
            query_embs = model.text_encoder(
                encoder_input_ids,
                attention_mask=text.attention_mask,
                encoder_hidden_states=ref_img_embs,
                encoder_attention_mask=ref_img_atts,
                return_dict=True,
            )
            query_feat = query_embs.last_hidden_state[:, 0, :]
            query_feat = F.normalize(model.text_proj(query_feat), dim=-1)
            query_feats.append(query_feat.cpu())

            # Encode the target image
            tar_img_feats.append(tar_feat.cpu())

        query_feats = torch.cat(query_feats, dim=0)
        tar_img_feats = torch.cat(tar_img_feats, dim=0)

        query_feats = F.normalize(query_feats, dim=-1)
        tar_img_feats = F.normalize(tar_img_feats, dim=-1)

        ref_img_ids = [data_loader.dataset.pairid2ref[pair_id] for pair_id in pair_ids]
        tar_img_ids = [data_loader.dataset.pairid2tar[pair_id] for pair_id in pair_ids]

        ref_img_ids = torch.tensor(ref_img_ids, dtype=torch.long)
        tar_img_ids = torch.tensor(tar_img_ids, dtype=torch.long)

        if fabric.world_size > 1:
            # Gather tensors from every process
            query_feats = fabric.all_gather(query_feats)
            tar_img_feats = fabric.all_gather(tar_img_feats)
            ref_img_ids = fabric.all_gather(ref_img_ids)
            tar_img_ids = fabric.all_gather(tar_img_ids)

            query_feats = einops.rearrange(query_feats, "d b e -> (d b) e")
            tar_img_feats = einops.rearrange(tar_img_feats, "d b e -> (d b) e")
            ref_img_ids = einops.rearrange(ref_img_ids, "d b -> (d b)")
            tar_img_ids = einops.rearrange(tar_img_ids, "d b -> (d b)")

        if fabric.global_rank == 0:
            sim_q2t = (query_feats @ tar_img_feats.t()).cpu().numpy()

            if self.remove_self_similarity:
                for i in range(len(ref_img_ids)):
                    for j in range(len(tar_img_ids)):
                        if ref_img_ids[i] == tar_img_ids[j]:
                            sim_q2t[i][j] = -10

            total_time = time.time() - start_time
            total_time_str = str(datetime.timedelta(seconds=int(total_time)))
            print("Evaluation time {}".format(total_time_str))

            recalls = eval_recall(sim_q2t)
            recalls["annotation"] = Path(data_loader.dataset.annotation_pth).name
            fabric.print(recalls)

            # Save results
            self_sim = "" if self.remove_self_similarity else "_ss"
            json_dump(recalls, f"recalls_covr{self_sim}.json")

            print(f"Recalls saved in {Path.cwd()} as recalls_covr{self_sim}.json")

        fabric.barrier()


@torch.no_grad()
def eval_recall(scores_q2t):
    # Query->Target
    ranks = np.zeros(scores_q2t.shape[0])

    for index, score in enumerate(scores_q2t):
        inds = np.argsort(score)[::-1]
        ranks[index] = np.where(inds == index)[0][0]

    # Compute metrics
    tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)  # type: ignore
    tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
    tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
    tr50 = 100.0 * len(np.where(ranks < 50)[0]) / len(ranks)

    tr_mean3 = (tr1 + tr5 + tr10) / 3
    tr_mean4 = (tr1 + tr5 + tr10 + tr50) / 4

    eval_result = {
        "R1": round(tr1, 2),
        "R5": round(tr5, 2),
        "R10": round(tr10, 2),
        "R50": round(tr50, 2),
        "meanR3": round(tr_mean3, 2),
        "meanR4": round(tr_mean4, 2),
    }
    return eval_result