Spaces:
Sleeping
Sleeping
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from src.data.randaugment import RandomAugment | |
normalize = transforms.Normalize( | |
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711) | |
) | |
class transform_train: | |
def __init__(self, image_size=384, min_scale=0.5): | |
self.transform = transforms.Compose( | |
[ | |
transforms.RandomResizedCrop( | |
image_size, | |
scale=(min_scale, 1.0), | |
interpolation=InterpolationMode.BICUBIC, | |
), | |
transforms.RandomHorizontalFlip(), | |
RandomAugment( | |
2, | |
5, | |
isPIL=True, | |
augs=[ | |
"Identity", | |
"AutoContrast", | |
"Brightness", | |
"Sharpness", | |
"Equalize", | |
"ShearX", | |
"ShearY", | |
"TranslateX", | |
"TranslateY", | |
"Rotate", | |
], | |
), | |
transforms.ToTensor(), | |
normalize, | |
] | |
) | |
def __call__(self, img): | |
return self.transform(img) | |
class transform_test(transforms.Compose): | |
def __init__(self, image_size=384): | |
self.transform = transforms.Compose( | |
[ | |
transforms.Resize( | |
(image_size, image_size), | |
interpolation=InterpolationMode.BICUBIC, | |
), | |
transforms.ToTensor(), | |
normalize, | |
] | |
) | |
def __call__(self, img): | |
return self.transform(img) | |