Nutrigenics-chatbot / src /data /webvid_covr.py
OmkarThawakar
initail commit
ed00004
import ast
from pathlib import Path
import pandas as pd
import torch
from lightning import LightningDataModule
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from src.data.transforms import transform_test, transform_train
from src.data.utils import FrameLoader, id2int, pre_caption
from src.tools.files import write_txt
from src.tools.utils import print_dist
Image.MAX_IMAGE_PIXELS = None # Disable DecompressionBombWarning
class WebVidCoVRDataModule(LightningDataModule):
def __init__(
self,
batch_size: int,
num_workers: int = 4,
pin_memory: bool = True,
annotation: dict = {"train": "", "val": ""},
vid_dirs: dict = {"train": "", "val": ""},
emb_dirs: dict = {"train": "", "val": ""},
image_size: int = 384,
emb_pool: str = "query",
iterate: str = "pth2",
vid_query_method: str = "middle",
vid_frames: int = 1,
**kwargs, # type: ignore
) -> None:
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
self.emb_pool = emb_pool
self.iterate = iterate
self.vid_query_method = vid_query_method
self.vid_frames = vid_frames
self.transform_train = transform_train(image_size)
self.transform_test = transform_test(image_size)
self.data_train = WebVidCoVRDataset(
transform=self.transform_train,
annotation=annotation["train"],
vid_dir=vid_dirs["train"],
emb_dir=emb_dirs["train"],
split="train",
emb_pool=self.emb_pool,
iterate=self.iterate,
vid_query_method=self.vid_query_method,
vid_frames=self.vid_frames,
)
self.data_val = WebVidCoVRDataset(
transform=self.transform_test,
annotation=annotation["val"],
vid_dir=vid_dirs["val"],
emb_dir=emb_dirs["val"],
split="val",
emb_pool=self.emb_pool,
iterate=self.iterate,
vid_query_method=self.vid_query_method,
vid_frames=self.vid_frames,
)
def prepare_data(self):
# things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
# download data, pre-process, split, save to disk, etc...
pass
def train_dataloader(self):
return DataLoader(
dataset=self.data_train,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=True,
drop_last=True,
)
def val_dataloader(self):
return DataLoader(
dataset=self.data_val,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
drop_last=False,
)
class WebVidCoVRTestDataModule(LightningDataModule):
def __init__(
self,
batch_size: int,
annotation: str,
vid_dirs: str,
emb_dirs: str,
num_workers: int = 4,
pin_memory: bool = True,
image_size: int = 384,
emb_pool: str = "query",
iterate: str = "pth2",
vid_query_method: str = "middle",
vid_frames: int = 1,
**kwargs, # type: ignore
) -> None:
super().__init__()
self.save_hyperparameters(logger=False)
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
self.emb_pool = emb_pool
self.iterate = iterate
self.vid_query_method = vid_query_method
self.vid_frames = vid_frames
self.transform_test = transform_test(image_size)
self.data_test = WebVidCoVRDataset(
transform=self.transform_test,
annotation=annotation,
vid_dir=vid_dirs,
emb_dir=emb_dirs,
split="test",
emb_pool=self.emb_pool,
iterate=self.iterate,
vid_query_method=self.vid_query_method,
vid_frames=self.vid_frames,
)
def test_dataloader(self):
return DataLoader(
dataset=self.data_test,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
drop_last=False,
)
class WebVidCoVRDataset(Dataset):
def __init__(
self,
transform,
annotation: str,
vid_dir: str,
emb_dir: str,
split: str,
max_words: int = 30,
emb_pool: str = "query",
iterate: str = "pth2",
vid_query_method: str = "middle",
vid_frames: int = 1,
) -> None:
super().__init__()
self.transform = transform
self.annotation_pth = annotation
assert Path(annotation).exists(), f"Annotation file {annotation} does not exist"
self.df = pd.read_csv(annotation)
self.vid_dir = Path(vid_dir)
self.emb_dir = Path(emb_dir)
assert self.vid_dir.exists(), f"Image directory {self.vid_dir} does not exist"
assert self.emb_dir.exists(), f"Embedding directory {emb_dir} does not exist"
assert split in [
"train",
"val",
"test",
], f"Invalid split: {split}, must be one of train, val, or test"
self.split = split
vid_pths = self.vid_dir.glob("*/*.mp4")
emb_pths = self.emb_dir.glob("*/*.pth")
id2vidpth = {
vid_pth.parent.stem + "/" + vid_pth.stem: vid_pth for vid_pth in vid_pths
}
id2embpth = {
emb_pth.parent.stem + "/" + emb_pth.stem: emb_pth for emb_pth in emb_pths
}
assert len(id2vidpth) > 0, f"No videos found in {vid_dir}"
assert len(id2embpth) > 0, f"No embeddings found in {emb_dir}"
self.df["path1"] = self.df["pth1"].apply(lambda x: id2vidpth.get(x, None)) # type: ignore
self.df["path2"] = self.df["pth2"].apply(lambda x: id2embpth.get(x, None)) # type: ignore
# Count unique missing paths
missing_pth1 = self.df[self.df["path1"].isna()]["pth1"].unique().tolist()
missing_pth1.sort()
total_pth1 = self.df["pth1"].nunique()
missing_pth2 = self.df[self.df["path2"].isna()]["pth2"].unique().tolist()
missing_pth2.sort()
total_pth2 = self.df["pth2"].nunique()
if len(missing_pth1) > 0:
print_dist(
f"Missing {len(missing_pth1)} pth1's ({len(missing_pth1)/total_pth1 * 100:.1f}%), saving them to missing_pth1-{split}.txt"
)
if split == "test":
raise ValueError(
f"Missing {len(missing_pth1)} pth1's ({len(missing_pth1)/total_pth1 * 100:.1f}%) in test split"
)
write_txt(missing_pth1, f"missing_pth1-{split}.txt")
if len(missing_pth2) > 0:
print_dist(
f"Missing {len(missing_pth2)} pth2's ({len(missing_pth2)/total_pth2 * 100:.1f}%), saving them to missing_pth2-{split}.txt"
)
if split == "test":
raise ValueError(
f"Missing {len(missing_pth2)} pth2's ({len(missing_pth2)/total_pth2 * 100:.1f}%) in test split"
)
write_txt(missing_pth2, f"missing_pth2-{split}.txt")
# Remove missing paths
self.df = self.df[self.df["path1"].notna()]
self.df = self.df[self.df["path2"].notna()]
self.df.reset_index(drop=True, inplace=True)
self.max_words = max_words
assert emb_pool in [
"middle",
"mean",
"query",
], f"Invalid emb_pool: {emb_pool}, must be one of middle, mean, or query"
self.emb_pool = emb_pool
if iterate in ["idx", "triplets"]:
iterate = "idx"
self.df["idx"] = self.df.index
self.iterate = iterate
self.target_txts = self.df[iterate].unique()
assert iterate in self.df.columns, f"{iterate} not in {Path(annotation).stem}"
self.df.sort_values(iterate, inplace=True)
self.df.reset_index(drop=True, inplace=True)
self.df["int1"] = self.df["pth1"].apply(lambda x: id2int(x, sub="0"))
self.df["int2"] = self.df["pth2"].apply(lambda x: id2int(x, sub="0"))
self.pairid2ref = self.df["int1"].to_dict()
assert (
self.df["int1"].nunique() == self.df["pth1"].nunique()
), "int1 is not unique"
assert (
self.df["int2"].nunique() == self.df["pth2"].nunique()
), "int2 is not unique"
# int2id is a dict with key: int1, value: pth1
self.int2id = self.df.groupby("int1")["pth1"].apply(set).to_dict()
self.int2id = {k: list(v)[0] for k, v in self.int2id.items()}
self.pairid2tar = self.df["int2"].to_dict()
self.df.set_index(iterate, inplace=True)
self.df[iterate] = self.df.index
if split == "test":
assert (
len(self.target_txts) == self.df.shape[0]
), "Test split should have one caption per row"
assert vid_query_method in [
"middle",
"random",
"sample",
], f"Invalid vid_query_method: {vid_query_method}, must be one of middle, random, or sample"
self.frame_loader = FrameLoader(
transform=self.transform, method=vid_query_method, frames_video=vid_frames
)
def __len__(self) -> int:
return len(self.target_txts)
def __getitem__(self, index):
target_txt = self.target_txts[index]
ann = self.df.loc[target_txt]
if ann.ndim > 1:
ann = ann.sample()
ann = ann.iloc[0]
reference_pth = str(ann["path1"])
reference_vid = self.frame_loader(reference_pth)
caption = pre_caption(ann["edit"], self.max_words)
target_pth = str(ann["path2"])
target_emb = torch.load(target_pth).cpu()
if self.emb_pool == "middle":
target_emb = target_emb[len(target_emb) // 2]
elif self.emb_pool == "mean":
target_emb = target_emb.mean(0)
elif self.emb_pool == "query":
vid_scores = ast.literal_eval(str(ann["scores"]))
if len(vid_scores) == 0:
vid_scores = [1.0] * len(target_emb)
vid_scores = torch.Tensor(vid_scores)
vid_scores = (vid_scores / 0.1).softmax(dim=0)
target_emb = torch.einsum("f,fe->e", vid_scores, target_emb)
return reference_vid, target_emb, caption, index