OmkarThawakar
initail commit
ed00004
import datetime
import time
from pathlib import Path
from typing import Dict, List
import einops
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from tabulate import tabulate
from src.tools.files import json_dump, json_load
class TestFashionIQ:
def __init__(self, category: str):
self.category = category
pass
@torch.no_grad()
def __call__(self, model, data_loader, fabric):
model.eval()
fabric.print("Computing features for evaluation...")
start_time = time.time()
query_feats = []
captions = []
idxs = []
for ref_img, _, caption, idx in data_loader:
idxs.extend(idx.cpu().numpy().tolist())
captions.extend(caption)
device = ref_img.device
ref_img_embs = model.visual_encoder(ref_img)
ref_img_atts = torch.ones(ref_img_embs.size()[:-1], dtype=torch.long).to(
device
)
text = model.tokenizer(
caption,
padding="longest",
truncation=True,
max_length=64,
return_tensors="pt",
).to(device)
# Shift encoder
encoder_input_ids = text.input_ids.clone()
encoder_input_ids[:, 0] = model.tokenizer.enc_token_id
query_embs = model.text_encoder(
encoder_input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=ref_img_embs,
encoder_attention_mask=ref_img_atts,
return_dict=True,
)
query_feat = query_embs.last_hidden_state[:, 0, :]
query_feat = F.normalize(model.text_proj(query_feat), dim=-1)
query_feats.append(query_feat.cpu())
query_feats = torch.cat(query_feats, dim=0)
query_feats = F.normalize(query_feats, dim=-1)
idxs = torch.tensor(idxs, dtype=torch.long)
if fabric.world_size > 1:
# Gather tensors from every process
query_feats = fabric.all_gather(query_feats)
idxs = fabric.all_gather(idxs)
query_feats = einops.rearrange(query_feats, "d b e -> (d b) e")
idxs = einops.rearrange(idxs, "d b -> (d b)")
if fabric.global_rank == 0:
idxs = idxs.cpu().numpy()
ref_img_ids = [data_loader.dataset.pairid2ref[idx] for idx in idxs]
ref_img_ids = [data_loader.dataset.int2id[id] for id in ref_img_ids]
tar_img_feats = []
tar_img_ids = []
for target_id in data_loader.dataset.target_ids:
tar_img_ids.append(target_id)
target_emb_pth = data_loader.dataset.id2embpth[target_id]
target_feat = torch.load(target_emb_pth).cpu()
tar_img_feats.append(target_feat.cpu())
tar_img_feats = torch.stack(tar_img_feats)
tar_img_feats = F.normalize(tar_img_feats, dim=-1)
tar_img_feats = tar_img_feats.to(query_feats.device)
sim_q2t = (query_feats @ tar_img_feats.t()).cpu()
# Add zeros where ref_img_id == tar_img_id
for i in range(len(ref_img_ids)):
for j in range(len(tar_img_ids)):
if ref_img_ids[i] == tar_img_ids[j]:
sim_q2t[i][j] = -10
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Evaluation time {}".format(total_time_str))
ref_img_ids = np.array(ref_img_ids)
tar_img_ids = np.array(tar_img_ids)
cor_img_ids = [data_loader.dataset.pairid2tar[idx] for idx in idxs]
cor_img_ids = [data_loader.dataset.int2id[id] for id in cor_img_ids]
recalls = get_recalls_labels(sim_q2t, cor_img_ids, tar_img_ids)
fabric.print(recalls)
# Save results
json_dump(recalls, f"recalls_fiq-{self.category}.json")
print(f"Recalls saved in {Path.cwd()} as recalls_fiq-{self.category}.json")
mean_results(fabric=fabric)
fabric.barrier()
# From google-research/composed_image_retrieval
def recall_at_k_labels(sim, query_lbls, target_lbls, k=10):
distances = 1 - sim
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(target_lbls)[sorted_indices]
labels = torch.tensor(
sorted_index_names
== np.repeat(np.array(query_lbls), len(target_lbls)).reshape(
len(query_lbls), -1
)
)
assert torch.equal(
torch.sum(labels, dim=-1).int(), torch.ones(len(query_lbls)).int()
)
return round((torch.sum(labels[:, :k]) / len(labels)).item() * 100, 2)
def get_recalls_labels(
sims, query_lbls, target_lbls, ks: List[int] = [1, 5, 10, 50]
) -> Dict[str, float]:
return {f"R{k}": recall_at_k_labels(sims, query_lbls, target_lbls, k) for k in ks}
def mean_results(dir=".", fabric=None, save=True):
dir = Path(dir)
recall_pths = list(dir.glob("recalls_fiq-*.json"))
recall_pths.sort()
if len(recall_pths) != 3:
return
df = {}
for pth in recall_pths:
name = pth.name.split("_")[1].split(".")[0]
data = json_load(pth)
df[name] = data
df = pd.DataFrame(df)
# FASHION-IQ
df_fiq = df[df.columns[df.columns.str.contains("fiq")]]
assert len(df_fiq.columns) == 3
df_fiq["Average"] = df_fiq.mean(axis=1)
df_fiq["Average"] = df_fiq["Average"].apply(lambda x: round(x, 2))
headers = [
"dress\nR10",
"dress\nR50",
"shirt\nR10",
"shirt\nR50",
"toptee\nR10",
"toptee\nR50",
"Average\nR10",
"Average\nR50",
]
fiq = []
for category in ["fiq-dress", "fiq-shirt", "fiq-toptee", "Average"]:
for recall in ["R10", "R50"]:
value = df_fiq.loc[recall, category]
value = str(value).zfill(2)
fiq.extend([value])
if fabric is None:
print(tabulate([fiq], headers=headers, tablefmt="latex_raw"))
print(" & ".join(fiq))
else:
fabric.print(tabulate([fiq], headers=headers))
fabric.print(" & ".join(fiq))
if save:
df_mean = df_fiq["Average"].to_dict()
df_mean = {k + "_mean": round(v, 2) for k, v in df_mean.items()}
json_dump(df_mean, "recalls_fiq-mean.json")