Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,180 Bytes
a68743b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import pandas as pd
import json
from PIL import Image
import numpy as np
import os
from pathlib import Path
import torch
import torch.nn.functional as F
# from src.data.embs import ImageDataset
from src.model.blip_embs import blip_embs
from src.data.transforms import transform_test
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import gradio as gr
import spaces
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq
from dotenv import load_dotenv
import asyncio
from flask import Flask, request, render_template
from flask_cors import CORS
from flask_socketio import SocketIO, emit, join_room, leave_room
# GROQ_API_KEY = os.getenv("GROQ_API_KEY")
GROQ_API_KEY = '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'
load_dotenv(".env")
USER_AGENT = os.getenv("USER_AGENT")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
SECRET_KEY = os.getenv("SECRET_KEY")
# Set environment variables
os.environ['USER_AGENT'] = USER_AGENT
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ["TOKENIZERS_PARALLELISM"] = 'true'
# Initialize Flask app and SocketIO with CORS
app = Flask(__name__)
CORS(app)
socketio = SocketIO(app, cors_allowed_origins="*")
app.config['SESSION_COOKIE_SECURE'] = True # Use HTTPS
app.config['SESSION_COOKIE_HTTPONLY'] = True
app.config['SESSION_COOKIE_SAMESITE'] = 'Lax'
app.config['SECRET_KEY'] = SECRET_KEY
# Initialize LLM
llm = ChatGroq(model="llama-3.1-8b-instant", temperature=0, max_tokens=1024, max_retries=2)
# QA system prompt and chain
qa_system_prompt = """
Prompt:
You are a highly intelligent assistant. Use the following context to answer user questions. Analyze the data carefully and generate a clear, concise, and informative response to the user's question based on this data.
Response Guidelines:
- Use only the information provided in the data to answer the question.
- Ensure the answer is accurate and directly related to the question.
- If the data is insufficient to answer the question, politey apologise and tell the user that there is insufficient data available to answer their question.
- Provide the response in a conversational yet professional tone.
Context:
{context}
"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
("human", "{input}")
]
)
question_answer_chain = qa_prompt | llm | StrOutputParser()
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all(input_ids[:, -len(stop):] == stop).item():
return True
return False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_blip_config(model="base"):
config = dict()
if model == "base":
config[
"pretrained"
] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth "
config["vit"] = "base"
config["batch_size_train"] = 32
config["batch_size_test"] = 16
config["vit_grad_ckpt"] = True
config["vit_ckpt_layer"] = 4
config["init_lr"] = 1e-5
elif model == "large":
config[
"pretrained"
] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_retrieval_coco.pth"
config["vit"] = "large"
config["batch_size_train"] = 16
config["batch_size_test"] = 32
config["vit_grad_ckpt"] = True
config["vit_ckpt_layer"] = 12
config["init_lr"] = 5e-6
config["image_size"] = 384
config["queue_size"] = 57600
config["alpha"] = 0.4
config["k_test"] = 256
config["negative_all_rank"] = True
return config
print("Creating model")
config = get_blip_config("large")
model = blip_embs(
pretrained=config["pretrained"],
image_size=config["image_size"],
vit=config["vit"],
vit_grad_ckpt=config["vit_grad_ckpt"],
vit_ckpt_layer=config["vit_ckpt_layer"],
queue_size=config["queue_size"],
negative_all_rank=config["negative_all_rank"],
)
model = model.to(device)
model.eval()
print("Model Loaded !")
print("="*50)
transform = transform_test(384)
print("Loading Data")
df = pd.read_json("datasets/sidechef/my_recipes.json")
print("Loading Target Embedding")
tar_img_feats = []
for _id in df["id_"].tolist():
tar_img_feats.append(torch.load("datasets/sidechef/blip-embs-large/{:07d}.pth".format(_id)).unsqueeze(0))
tar_img_feats = torch.cat(tar_img_feats, dim=0)
class Chat:
def __init__(self, model, transform, dataframe, tar_img_feats, device='cuda:0', stopping_criteria=None):
self.device = device
self.model = model
self.transform = transform
self.df = dataframe
self.tar_img_feats = tar_img_feats
self.img_feats = None
self.target_recipe = None
self.messages = []
if stopping_criteria is not None:
self.stopping_criteria = stopping_criteria
else:
stop_words_ids = [torch.tensor([2]).to(self.device)]
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
def encode_image(self, image_path):
img = Image.fromarray(image_path).convert("RGB")
img = self.transform(img).unsqueeze(0)
img = img.to(self.device)
img_embs = model.visual_encoder(img)
img_feats = F.normalize(model.vision_proj(img_embs[:, 0, :]), dim=-1).cpu()
self.img_feats = img_feats
self.get_target(self.img_feats, self.tar_img_feats)
def get_target(self, img_feats, tar_img_feats) :
score = (img_feats @ tar_img_feats.t()).squeeze(0).cpu().detach().numpy()
index = np.argsort(score)[::-1][0] + 1
self.target_recipe = df.iloc[index]
def ask(self):
return json.dumps(self.target_recipe.to_json())
chat = Chat(model,transform,df,tar_img_feats, device)
print("Chat Initialized !")
custom_css = """
.primary{
background-color: #4CAF50; /* Green */
}
"""
@spaces.GPU
def respond_to_user(image, message):
# Process the image and message here
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
chat = Chat(model,transform,df,tar_img_feats, device)
chat.encode_image(image)
data = chat.ask()
formated_input = {
'input': message,
'context': data
}
try:
response = question_answer_chain.invoke(formated_input)
except Exception as e:
response = {'content':"An error occurred while processing your request."}
return response
iface = gr.Interface(
fn=respond_to_user,
inputs=[gr.Image(), gr.Textbox(label="Ask Query")],
outputs=gr.Textbox(label="Nutrition-GPT"),
title="Nutrition-GPT Demo",
description="Upload an food image and ask queries!",
css=".component-12 {background-color: red}",
)
iface.launch() |