File size: 58,469 Bytes
a68743b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 147,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from PIL import Image\n",
    "import numpy as np\n",
    "import os\n",
    "\n",
    "import torch\n",
    "import torch.nn.functional as F\n",
    "\n",
    "# from src.data.embs import ImageDataset\n",
    "from src.model.blip_embs import blip_embs\n",
    "from src.data.transforms import transform_test\n",
    "\n",
    "from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer\n",
    "import gradio as gr\n",
    "# import spaces\n",
    "\n",
    "from langchain.chains import ConversationChain\n",
    "from langchain_community.chat_message_histories import ChatMessageHistory\n",
    "from langchain_core.runnables import RunnableWithMessageHistory\n",
    "from langchain_core.output_parsers import StrOutputParser\n",
    "from langchain_core.prompts import ChatPromptTemplate\n",
    "from langchain_groq import ChatGroq\n",
    "\n",
    "from dotenv import load_dotenv\n",
    "from flask import Flask, request, render_template\n",
    "from flask_cors import CORS\n",
    "from flask_socketio import SocketIO, emit\n",
    "\n",
    "import json\n",
    "from openai import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 148,
   "metadata": {},
   "outputs": [],
   "source": [
    "# GROQ_API_KEY = os.getenv(\"GROQ_API_KEY\")\n",
    "GROQ_API_KEY = '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'\n",
    "OPENAI_API_KEY=\"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\"\n",
    "load_dotenv(\".env\")\n",
    "USER_AGENT = os.getenv(\"USER_AGENT\")\n",
    "GROQ_API_KEY = os.getenv(\"GROQ_API_KEY\")\n",
    "\n",
    "SECRET_KEY = os.getenv(\"SECRET_KEY\")\n",
    "\n",
    "# Set environment variables\n",
    "os.environ['USER_AGENT'] = USER_AGENT\n",
    "os.environ[\"GROQ_API_KEY\"] = GROQ_API_KEY\n",
    "os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY\n",
    "os.environ[\"TOKENIZERS_PARALLELISM\"] = 'true'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 149,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize Flask app and SocketIO with CORS\n",
    "app = Flask(__name__)\n",
    "CORS(app)\n",
    "socketio = SocketIO(app, cors_allowed_origins=\"*\", logger=True)\n",
    "app.config['SESSION_COOKIE_SECURE'] = True  # Use HTTPS\n",
    "app.config['SESSION_COOKIE_HTTPONLY'] = True\n",
    "app.config['SESSION_COOKIE_SAMESITE'] = 'Lax'\n",
    "app.config['SECRET_KEY'] = SECRET_KEY"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 150,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize LLM\n",
    "llm = ChatGroq(model=\"llama-3.1-8b-instant\", temperature=0, max_tokens=1024, max_retries=2)\n",
    "\n",
    "# Initialize Router\n",
    "router = ChatGroq(model=\"llama-3.2-3b-preview\", temperature=0, max_tokens=1024, max_retries=2, model_kwargs={\"response_format\": {\"type\": \"json_object\"}})\n",
    "\n",
    "# Initialized recommendation LLM\n",
    "client = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 151,
   "metadata": {},
   "outputs": [],
   "source": [
    "class StoppingCriteriaSub(StoppingCriteria):\n",
    "\n",
    "    def __init__(self, stops=[], encounters=1):\n",
    "        super().__init__()\n",
    "        self.stops = stops\n",
    "\n",
    "    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):\n",
    "        for stop in self.stops:\n",
    "            if torch.all(input_ids[:, -len(stop):] == stop).item():\n",
    "                return True\n",
    "\n",
    "        return False\n",
    "\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "\n",
    "def get_blip_config(model=\"base\"):\n",
    "    config = dict()\n",
    "    if model == \"base\":\n",
    "        config[\n",
    "            \"pretrained\"\n",
    "        ] = \"https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth \"\n",
    "        config[\"vit\"] = \"base\"\n",
    "        config[\"batch_size_train\"] = 32\n",
    "        config[\"batch_size_test\"] = 16\n",
    "        config[\"vit_grad_ckpt\"] = True\n",
    "        config[\"vit_ckpt_layer\"] = 4\n",
    "        config[\"init_lr\"] = 1e-5\n",
    "    elif model == \"large\":\n",
    "        config[\n",
    "            \"pretrained\"\n",
    "        ] = \"https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_retrieval_coco.pth\"\n",
    "        config[\"vit\"] = \"large\"\n",
    "        config[\"batch_size_train\"] = 16\n",
    "        config[\"batch_size_test\"] = 32\n",
    "        config[\"vit_grad_ckpt\"] = True\n",
    "        config[\"vit_ckpt_layer\"] = 12\n",
    "        config[\"init_lr\"] = 5e-6\n",
    "\n",
    "    config[\"image_size\"] = 384\n",
    "    config[\"queue_size\"] = 57600\n",
    "    config[\"alpha\"] = 0.4\n",
    "    config[\"k_test\"] = 256\n",
    "    config[\"negative_all_rank\"] = True\n",
    "\n",
    "    return config"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 152,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Creating model\n",
      "load checkpoint from https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_retrieval_coco.pth\n",
      "missing keys:\n",
      "[]\n",
      "Model Loaded !\n",
      "==================================================\n"
     ]
    }
   ],
   "source": [
    "print(\"Creating model\")\n",
    "config = get_blip_config(\"large\")\n",
    "\n",
    "model = blip_embs(\n",
    "        pretrained=config[\"pretrained\"],\n",
    "        image_size=config[\"image_size\"],\n",
    "        vit=config[\"vit\"],\n",
    "        vit_grad_ckpt=config[\"vit_grad_ckpt\"],\n",
    "        vit_ckpt_layer=config[\"vit_ckpt_layer\"],\n",
    "        queue_size=config[\"queue_size\"],\n",
    "        negative_all_rank=config[\"negative_all_rank\"],\n",
    "    )\n",
    "\n",
    "model = model.to(device)\n",
    "model.eval()\n",
    "print(\"Model Loaded !\")\n",
    "print(\"=\"*50)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 153,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loading Data\n",
      "Loading Target Embedding\n"
     ]
    }
   ],
   "source": [
    "transform = transform_test(384)\n",
    "\n",
    "print(\"Loading Data\")\n",
    "df = pd.read_json(\"datasets/sidechef/my_recipes.json\")\n",
    "\n",
    "print(\"Loading Target Embedding\")\n",
    "tar_img_feats = []\n",
    "for _id in df[\"id_\"].tolist():     \n",
    "    tar_img_feats.append(torch.load(\"datasets/sidechef/blip-embs-large/{:07d}.pth\".format(_id)).unsqueeze(0))\n",
    "\n",
    "tar_img_feats = torch.cat(tar_img_feats, dim=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 154,
   "metadata": {},
   "outputs": [],
   "source": [
    "class Chat:\n",
    "\n",
    "    def __init__(self, model, transform, dataframe, tar_img_feats, device='cuda:0', stopping_criteria=None):\n",
    "        self.device = device\n",
    "        self.model = model\n",
    "        self.transform = transform\n",
    "        self.df = dataframe\n",
    "        self.tar_img_feats = tar_img_feats\n",
    "        self.img_feats = None\n",
    "        self.target_recipe = None\n",
    "        self.messages = []\n",
    "\n",
    "        if stopping_criteria is not None:\n",
    "            self.stopping_criteria = stopping_criteria\n",
    "        else:\n",
    "            stop_words_ids = [torch.tensor([2]).to(self.device)]\n",
    "            self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])\n",
    "\n",
    "    def encode_image(self, image_path):\n",
    "        img = Image.fromarray(image_path).convert(\"RGB\")\n",
    "        img = self.transform(img).unsqueeze(0)\n",
    "        img = img.to(self.device)\n",
    "        img_embs = model.visual_encoder(img)\n",
    "        img_feats = F.normalize(model.vision_proj(img_embs[:, 0, :]), dim=-1).cpu()\n",
    "\n",
    "        self.img_feats = img_feats \n",
    "\n",
    "        self.get_target(self.img_feats, self.tar_img_feats)\n",
    "\n",
    "    def get_target(self, img_feats, tar_img_feats) : \n",
    "        score = (img_feats @ tar_img_feats.t()).squeeze(0).cpu().detach().numpy()\n",
    "        index = np.argsort(score)[::-1][0]\n",
    "        self.target_recipe = df.iloc[index]\n",
    "\n",
    "    def ask(self):\n",
    "        return json.dumps(self.target_recipe.to_json())\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 155,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Chat Initialized !\n"
     ]
    }
   ],
   "source": [
    "chat = Chat(model,transform,df,tar_img_feats, device)\n",
    "print(\"Chat Initialized !\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 156,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def answer_generator(formated_input):\n",
    "    # QA system prompt and chain\n",
    "    qa_system_prompt = \"\"\"\n",
    "    You are an AI assistant developed by Nutrigenics AI, specializing in intelligent recipe information retrieval and recipe suggestions. Your purpose is to help users by recommending recipes, providing detailed nutritional values, listing ingredients, offering step-by-step cooking instructions, and filtering recipes based on provide context ans user query.\n",
    "    Operational Guidelines:\n",
    "    1. Input Structure:\n",
    "    - Context: You may receive contextual information related to recipes, such as specific data sets, user preferences, dietary restrictions, or previously selected dishes.\n",
    "    - User Query: Users will pose questions or requests related to recipes, nutritional information, ingredient substitutions, cooking instructions, and more.\n",
    "    2. Response Strategy:\n",
    "    - Utilize Provided Context: If the context contains relevant information that addresses the user's query, base your response on this provided data to ensure accuracy and relevance.\n",
    "    - Respond to User Query Directly: If the context does not contain the necessary information to answer the user's query, generate a response based solely on the user's input and your trained knowledge.\n",
    "    Core Functionalities:\n",
    "    - Nutritional Information: Accurately provide nutritional values for each recipe, including calories, macronutrients (proteins, fats, carbohydrates), and essential vitamins and minerals, using contextual data when available.\n",
    "    - Ingredient Details: List all ingredients required for recipes, including substitute options for dietary restrictions or ingredient availability, utilizing context when relevant.\n",
    "    - Step-by-Step Cooking Instructions: Deliver clear, easy-to-follow instructions for preparing and cooking meals, informed by any provided contextual data.\n",
    "    - Recipe Recommendations: Suggest dishes based on user preferences, dietary restrictions, available ingredients, and contextual data if provided.\n",
    "    Additional Instructions:\n",
    "    - Precision and Personalization: Always aim to provide precise, personalized, and relevant information to users based on both the provided context and their specific queries.\n",
    "    - Clarity and Coherence: Ensure that all responses are clear, well-structured, and easy to understand, facilitating a seamless user experience.\n",
    "    - Substitute Suggestions: When suggesting ingredient substitutes, consider user preferences and dietary restrictions outlined in the context or user query.\n",
    "    - Dynamic Adaptation: Adapt your responses dynamically based on whether the context is relevant to the user's current request, ensuring optimal use of available information.\n",
    "    Don't mention about context in the response, format the answer in a natural and friendly way.\n",
    "    Context:\n",
    "    {context}\n",
    "    \"\"\"\n",
    "    qa_prompt = ChatPromptTemplate.from_messages(\n",
    "        [\n",
    "            (\"system\", qa_system_prompt),\n",
    "            (\"human\", \"{input}\")\n",
    "        ]\n",
    "    )\n",
    "\n",
    "    # Create the base chain\n",
    "    base_chain = qa_prompt | llm | StrOutputParser()\n",
    "\n",
    "    # Wrap the chain with message history\n",
    "    question_answer_chain = RunnableWithMessageHistory(\n",
    "        base_chain,\n",
    "        lambda session_id: ChatMessageHistory(),  # This creates a new history for each session\n",
    "        input_messages_key=\"input\",\n",
    "        history_messages_key=\"chat_history\"\n",
    "    )\n",
    "\n",
    "    response = question_answer_chain.invoke(formated_input, config={\"configurable\": {\"session_id\": 'abc123'}})\n",
    "\n",
    "    return response\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 157,
   "metadata": {},
   "outputs": [],
   "source": [
    "### Router\n",
    "import json\n",
    "from langchain_core.messages import HumanMessage, SystemMessage\n",
    "\n",
    "def router_node(query):\n",
    "    # Prompt\n",
    "    router_instructions = \"\"\"You are an expert at determining the appropriate task for a user’s question based on chat history and the current query context. You have two available tasks:\n",
    "\n",
    "        1.\tRetrieval: Fetch information based on user's chat history and current query.\n",
    "        2.\tRecommendation/Suggestion: Recommend recipes to users based on the query.\n",
    "\n",
    "    Return a JSON response with a single key named “task” indicating either “retrieval” or “recommendation” based on your decision.\n",
    "    \"\"\"\n",
    "\n",
    "    \n",
    "\n",
    "    response = router.invoke(\n",
    "        [SystemMessage(content=router_instructions)]\n",
    "        + [\n",
    "            HumanMessage(\n",
    "                content=query\n",
    "            )\n",
    "        ]\n",
    "    )\n",
    "    res = json.loads(response.content)\n",
    "    return res['task']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 158,
   "metadata": {},
   "outputs": [],
   "source": [
    "def recommendation_node(query):\n",
    "    prompt = \"\"\"\n",
    "    You are a helpful assistant that writes Python code to filter recipes from a JSON filr based o the user query. \\n\n",
    "    JSON file path = 'recipes.json' \\n\n",
    "    The JSON file is a list of recipes with the following structure: \\n\n",
    "    {\n",
    "        \"recipe_name\": string,\n",
    "        \"recipe_time\": integer,\n",
    "        \"recipe_yields\": string,\n",
    "        \"recipe_ingredients\": list of ingredients,\n",
    "        \"recipe_instructions\": list of instruections,\n",
    "        \"recipe_image\": string,\n",
    "        \"blogger\": string,\n",
    "        \"recipe_nutrients\": JSON object with key value pairs such as \"protein: 10g\",\n",
    "        \"tags\": list of tags related to recipe\n",
    "    } \\n\n",
    "\n",
    "    Here is the example of an recipe json object from the JSON data: \\n\n",
    "    {\n",
    "        \"recipe_name\": \"Asian Potato Salad with Seven Minute Egg\",\n",
    "        \"recipe_time\": 0,\n",
    "        \"recipe_yields\": \"4 servings\",\n",
    "        \"recipe_ingredients\": [\n",
    "            \"2 1/2 cup Multi-Colored Fingerling Potato\",\n",
    "            \"3/4 cup Celery\",\n",
    "            \"1/4 cup Red Onion\",\n",
    "            \"2 tablespoon Fresh Parsley\",\n",
    "            \"1/3 cup Mayonnaise\",\n",
    "            \"1 tablespoon Chili Garlic Sauce\",\n",
    "            \"1 teaspoon Hoisin Sauce\",\n",
    "            \"1 splash Soy Sauce\",\n",
    "            \"to taste Salt\",\n",
    "            \"to taste Ground Black Pepper\",\n",
    "            \"4 Egg\"\n",
    "        ],\n",
    "        \"recipe_instructions\": \"Fill a large stock pot with water.\\nAdd the Multi-Colored Fingerling Potato (2 1/2 cup) and bring water to a boil. Boil the potatoes for 20 minutes or until fork tender.\\nDrain the potatoes and let them cool completely.\\nMeanwhile, mix together in a small bowl Mayonnaise (1/3 cup), Chili Garlic Sauce (1 tablespoon), Hoisin Sauce (1 teaspoon), and Soy Sauce (1 splash).\\nTo make the Egg (4), fill a stock pot with water and bring to a boil Gently add the eggs to the water and set a timer for seven minutes.\\nThen move the eggs to an ice bath to cool completely. Once cooled, crack the egg slightly and remove the shell. Slice in half when ready to serve.\\nNext, halve the cooled potatoes and place into a large serving bowl. Add the Ground Black Pepper (to taste), Celery (3/4 cup), Red Onion (1/4 cup), and mayo mixture. Toss to combine adding Salt (to taste) and Fresh Parsley (2 tablespoon).\\nTop with seven minute eggs and serve. Enjoy!\",\n",
    "        \"recipe_image\": \"https://www.sidechef.com/recipe/eeeeeceb-493e-493d-8273-66c800821b13.jpg?d=1408x1120\",\n",
    "        \"blogger\": \"sidechef.com\",\n",
    "        \"recipe_nutrients\": {\n",
    "            \"calories\": \"80 calories\",\n",
    "            \"proteinContent\": \"2.1 g\",\n",
    "            \"fatContent\": \"6.2 g\",\n",
    "            \"carbohydrateContent\": \"3.9 g\",\n",
    "            \"fiberContent\": \"0.5 g\",\n",
    "            \"sugarContent\": \"0.4 g\",\n",
    "            \"sodiumContent\": \"108.0 mg\",\n",
    "            \"saturatedFatContent\": \"1.2 g\",\n",
    "            \"transFatContent\": \"0.0 g\",\n",
    "            \"cholesterolContent\": \"47.4 mg\",\n",
    "            \"unsaturatedFatContent\": \"3.8 g\"\n",
    "        },\n",
    "        \"tags\": [\n",
    "            \"Salad\",\n",
    "            \"Lunch\",\n",
    "            \"Brunch\",\n",
    "            \"Appetizers\",\n",
    "            \"Side Dish\",\n",
    "            \"Budget-Friendly\",\n",
    "            \"Vegetarian\",\n",
    "            \"Pescatarian\",\n",
    "            \"Eggs\",\n",
    "            \"Potatoes\",\n",
    "            \"Dairy-Free\",\n",
    "            \"Shellfish-Free\"\n",
    "        ]\n",
    "    } \\n\n",
    "\n",
    "    Based on the user query, provide a Python function to filter the JSON data. The output of the function should be a list of json objects. \\n\n",
    "\n",
    "    Your output instructions:\n",
    "    - The function name should be filter_recipes. The input to the function should be file name.\n",
    "    - The length of output recipes should not be more than 10.\n",
    "    - Only give me output function. Do not call the function.\n",
    "    - Give the python function as a key named \"code\" in a json format.\n",
    "    - Do not include any other text with the output, only give python code.\n",
    "    - If you do not follow the above given instructions, the chat may be terminated.\n",
    "    \"\"\"\n",
    "    max_tries = 3\n",
    "    while True:\n",
    "        try:\n",
    "            # llm = ChatGroq(model=\"llama-3.1-8b-instant\", temperature=0, max_tokens=1024, max_retries=2, model_kwargs={\"response_format\": {\"type\": \"json_object\"}})\n",
    "            response = client.chat.completions.create(\n",
    "                model=\"gpt-4o-mini\",\n",
    "                messages=[\n",
    "                    {\"role\": \"system\", \"content\": prompt},\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": query\n",
    "                    }\n",
    "                ]\n",
    "            )\n",
    "\n",
    "            content = response.choices[0].message.content\n",
    "\n",
    "            res = json.loads(content)\n",
    "            script = res['code']\n",
    "            exec(script)\n",
    "            recipes = filter_recipes('recipes.json')\n",
    "            if recipes:\n",
    "                break\n",
    "        except Exception as e:\n",
    "            if max_tries <= 0:\n",
    "                return []\n",
    "            else:\n",
    "                max_tries -= 1\n",
    "    return recipes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 167,
   "metadata": {},
   "outputs": [],
   "source": [
    "CURR_CONTEXT = ''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 168,
   "metadata": {},
   "outputs": [],
   "source": [
    "# @spaces.GPU\n",
    "def respond_to_user(image=[], message=''):\n",
    "    global curr_context\n",
    "    if len(image) > 0:\n",
    "        try:\n",
    "            # Process the image and message here\n",
    "            device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "            chat = Chat(model,transform,df,tar_img_feats, device)\n",
    "            chat.encode_image(image)\n",
    "            data = chat.ask()\n",
    "            curr_context = data\n",
    "            formated_input = {\n",
    "                'input': message,\n",
    "                'context': data\n",
    "            }\n",
    "            response = answer_generator(formated_input)\n",
    "        except Exception as e:\n",
    "            print(e)\n",
    "            response = {'content':\"An error occurred while processing your request.\"}\n",
    "    elif len(image) == 0 and message is not None:\n",
    "        print(\"I am here\")\n",
    "        task = router_node(message)\n",
    "        if task == 'retrieval':\n",
    "            response = recommendation_node(message)\n",
    "            if response:\n",
    "                response = {'content':\"An error occurred while processing your request.\"}\n",
    "        else:\n",
    "            formated_input = {\n",
    "                'input': message,\n",
    "                'context': curr_context\n",
    "            }\n",
    "            response = answer_generator(formated_input)\n",
    "\n",
    "    return response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 169,
   "metadata": {},
   "outputs": [],
   "source": [
    "image_path = \"./test_images/15-Second_Creamy_Scrambled_Eggs_0000200.png\"\n",
    "message = \"give me nutritional information of this dish\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 170,
   "metadata": {},
   "outputs": [],
   "source": [
    "from PIL import Image\n",
    "import numpy as np\n",
    "\n",
    "# Load the image\n",
    "image = Image.open(image_path)\n",
    "\n",
    "# Convert the image to a NumPy array\n",
    "image_array = np.array(image)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 172,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "('For the \"15-Second Creamy Scrambled Eggs\" recipe, you\\'ll need the following '\n",
      " 'ingredients:\\n'\n",
      " '\\n'\n",
      " '1. 3 large Eggs\\n'\n",
      " '2. 1 1/2 tablespoon Milk\\n'\n",
      " '3. 1 3/4 teaspoon Corn Starch\\n'\n",
      " '4. Salt (to taste)\\n'\n",
      " '5. 3 tablespoon Unsalted Butter\\n'\n",
      " '\\n'\n",
      " 'These ingredients will help you create the creamiest, fastest, and easiest '\n",
      " 'scrambled eggs ever!')\n"
     ]
    }
   ],
   "source": [
    "import pprint\n",
    "res = respond_to_user(image=image_array, message=\"give me ingredients fot his dish\")\n",
    "pprint.pprint(res)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 166,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "''"
      ]
     },
     "execution_count": 166,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "curr_context"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 173,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'recipe_name': 'Farmers Market Breakfast Pizza',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '2 servings',\n",
       "  'recipe_ingredients': ['1/2 Pizza Dough',\n",
       "   '1/2 cup Kale',\n",
       "   '1/2 cup Onion',\n",
       "   '1/2 Zucchini',\n",
       "   '1/2 Yellow Squash',\n",
       "   '1/2 cup Shredded Mozzarella Cheese',\n",
       "   '3 Egg',\n",
       "   '1 tablespoon Coconut Oil',\n",
       "   '3 clove Garlic',\n",
       "   '1 cup Sweet Onion',\n",
       "   '1/4 cup Water',\n",
       "   '3 cup Cherry Tomato',\n",
       "   '1/4 teaspoon Salt',\n",
       "   '1/4 teaspoon Ground Black Pepper',\n",
       "   '1 teaspoon Granulated Sugar',\n",
       "   '1 tablespoon Dried Parsley',\n",
       "   '1 teaspoon Dried Basil',\n",
       "   '10 Fresh Basil Leaf',\n",
       "   'as needed Coconut Oil Cooking Spray'],\n",
       "  'recipe_instructions': 'For homemade pizza sauce, finely chop the Sweet Onion (1 cup), and mince the Garlic (3 clove). To a large sauce pan over medium heat, add the Coconut Oil (1 tablespoon), garlic and onions. Cook until onions are translucent, about 5 to 6 minutes.\\nAdd Water (1/4 cup), chopped Cherry Tomato (3 cup), Salt (1/4 teaspoon), Ground Black Pepper (1/4 teaspoon), Granulated Sugar (1 teaspoon), Dried Parsley (1 tablespoon), Dried Basil (1 teaspoon), finely chopped Fresh Basil Leaf (10), and continue cooking another 2 to 3 minutes.\\nReduce heat and simmer 5 more minutes, or until tomatoes have released their juices and cooked down.\\nRemove sauce pan from stove, allow to cool 2 to 3 minutes, then add to NutriBullet or food processor and process 8 to 10 seconds or until sauce reaches a thick, slightly chunky consistency.\\nPreheat oven to 400 degrees F (200 degrees C).\\nSpray pizza pan with Pizza Dough (1/2), roll out Coconut Oil Cooking Spray (as needed), and bake crust for 5 minutes.\\nThinly slice the Zucchini (1/2) and Yellow Squash (1/2).\\nRemove from the oven, add homemade sauce, chopped Kale (1/2 cup), sliced Onion (1/2 cup), zucchini, squash, and Shredded Mozzarella Cheese (1/2 cup), then top with the Egg (3). Bake an additional 5 minutes.\\nTurn heat up to 425 degrees F (220 degrees C), and bake 5 to 7 minutes or until the whites of the eggs are cooked through and the yoke is over medium.\\nEnjoy!',\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/1cd15944-9411-4a9f-9cc9-18cb2050041e.jpg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'calories': '315 calories',\n",
       "   'proteinContent': '16.2 g',\n",
       "   'fatContent': '10.3 g',\n",
       "   'carbohydrateContent': '43.1 g',\n",
       "   'fiberContent': '7.8 g',\n",
       "   'sugarContent': '8.7 g',\n",
       "   'sodiumContent': '586.3 mg',\n",
       "   'saturatedFatContent': '5.3 g',\n",
       "   'transFatContent': '0.0 g',\n",
       "   'cholesterolContent': '144.3 mg',\n",
       "   'unsaturatedFatContent': '2.5 g'},\n",
       "  'tags': ['Breakfast',\n",
       "   'Brunch',\n",
       "   'Main Dish',\n",
       "   'Budget-Friendly',\n",
       "   'Vegetarian',\n",
       "   'Pescatarian',\n",
       "   'Eggs',\n",
       "   'Pizza',\n",
       "   'Vegetables',\n",
       "   'American',\n",
       "   'Shellfish-Free',\n",
       "   'Soy-Free',\n",
       "   \"Mothers' Day\",\n",
       "   \"Father's Day\",\n",
       "   'Food Processor',\n",
       "   'Fish-Free',\n",
       "   'Peanut-Free',\n",
       "   'Tree Nut-Free',\n",
       "   'Oven',\n",
       "   'Stove',\n",
       "   ''],\n",
       "  'id_': '0000004'},\n",
       " {'recipe_name': 'Fettuccini Carbonara',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '2 servings',\n",
       "  'recipe_ingredients': ['2 Shallot',\n",
       "   '1 clove Garlic',\n",
       "   '2 Egg',\n",
       "   '6 slice Bacon',\n",
       "   '1/2 cup Heavy Cream',\n",
       "   '1/4 cup Grated Parmesan Cheese',\n",
       "   '8 ounce Fettuccine',\n",
       "   '1 tablespoon Olive Oil',\n",
       "   'to taste Salt',\n",
       "   'to taste Ground Black Pepper',\n",
       "   'to taste Fresh Parsley'],\n",
       "  'recipe_instructions': \"Put a generously salted pot of water on to boil for the pasta.\\nIn a pan over medium-low heat, add the Bacon (6 slice) and cook until done but flexible. Sauté Shallot (2) and Garlic (1 clove) until soft.\\nTurn off heat. Add Grated Parmesan Cheese (1/4 cup), Heavy Cream (1/2 cup), and Egg (2) to the shallots and bacon. Mix well.\\nBoil Fettuccine (8 ounce) until al dente. If you're using frozen fresh, pasta about 6 minutes. If it's fresh, 4 minutes. If using dry pasta, follow package instructions.\\nLift pasta out of pot and place into cream mixture. If a little of the pasta water gets into the sauce, that's ok, since the starch in the water with help thicken it up. Gently toss to combine. Add Salt (to taste) and Ground Black Pepper (to taste).\\nDrizzle with Fresh Parsley (to taste). Top with Olive Oil (1 tablespoon) and grated parmesan cheese.\",\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/9e5df75f-bf1a-4e68-b8a9-096842ea6bd6.jpg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'calories': '495 calories',\n",
       "   'proteinContent': '15.9 g',\n",
       "   'fatContent': '27.1 g',\n",
       "   'sugarContent': '3.2 g',\n",
       "   'sodiumContent': '282.9 mg',\n",
       "   'saturatedFatContent': '12.0 g',\n",
       "   'transFatContent': '0.0 g',\n",
       "   'cholesterolContent': '150.1 mg',\n",
       "   'carbohydrateContent': '47.5 g',\n",
       "   'fiberContent': '2.5 g',\n",
       "   'unsaturatedFatContent': '9.9 g'},\n",
       "  'tags': ['Pasta',\n",
       "   'Dinner',\n",
       "   'Side Dish',\n",
       "   'Main Dish',\n",
       "   'Quick and Easy',\n",
       "   'Pork',\n",
       "   'Eggs',\n",
       "   'Cheese',\n",
       "   'Date Night',\n",
       "   '30 or Less',\n",
       "   'Comfort Food',\n",
       "   'Easy',\n",
       "   'Quick',\n",
       "   'Italian',\n",
       "   'Shellfish-Free',\n",
       "   'Gluten-Free',\n",
       "   'Soy-Free',\n",
       "   'Fish-Free',\n",
       "   'Peanut-Free',\n",
       "   'Tree Nut-Free',\n",
       "   'Sugar-Free',\n",
       "   'Classic',\n",
       "   'Tomato-Free',\n",
       "   'Stove',\n",
       "   ''],\n",
       "  'id_': '0000006'},\n",
       " {'recipe_name': 'Huevos Rancheros',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '1 serving',\n",
       "  'recipe_ingredients': ['2 Yellow Corn Tortilla',\n",
       "   '2 tablespoon Pinto Beans',\n",
       "   '2 Egg',\n",
       "   '2 tablespoon Salsa',\n",
       "   'as needed Nonstick Cooking Spray',\n",
       "   'to taste Avocado',\n",
       "   'to taste Cotija Cheese',\n",
       "   'to taste Bacon Bits',\n",
       "   'to taste Fresh Cilantro'],\n",
       "  'recipe_instructions': 'In a small frying pan, spray a little Nonstick Cooking Spray (as needed) in the pan and heat over medium-high heat. Once hot, place Yellow Corn Tortilla (2), then spray the top of tortilla with oil. Lightly fry for about 30 seconds on each side.\\nCook the Egg (2) to your liking: sunny side up, over easy, or scrambled.\\nAssemble Huevos Rancheros by spreading Salsa (2 tablespoon) over the fried tortillas. Top with cooked eggs and Pinto Beans (2 tablespoon).\\nAdd Fresh Cilantro (to taste), Cotija Cheese (to taste), Bacon Bits (to taste), and Avocado (to taste) if desired. Enjoy!',\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/5284bc88-1305-4379-90c1-59b74a7e9660.jpeg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'calories': '290 calories',\n",
       "   'proteinContent': '19.2 g',\n",
       "   'fatContent': '10.2 g',\n",
       "   'carbohydrateContent': '37.6 g',\n",
       "   'fiberContent': '11.7 g',\n",
       "   'sugarContent': '2.3 g',\n",
       "   'sodiumContent': '380.4 mg',\n",
       "   'saturatedFatContent': '3.1 g',\n",
       "   'transFatContent': '0.0 g',\n",
       "   'cholesterolContent': '364.6 mg',\n",
       "   'unsaturatedFatContent': '5.5 g'},\n",
       "  'tags': ['Breakfast',\n",
       "   'Brunch',\n",
       "   'Quick and Easy',\n",
       "   'Beans and Legumes',\n",
       "   'Eggs',\n",
       "   '30 or Less',\n",
       "   'Easy',\n",
       "   'Quick',\n",
       "   'Mexican',\n",
       "   'Shellfish-Free',\n",
       "   'Full Meal',\n",
       "   'Gluten-Free',\n",
       "   'Soy-Free',\n",
       "   'Fish-Free',\n",
       "   'Peanut-Free',\n",
       "   'Tree Nut-Free',\n",
       "   'Sugar-Free',\n",
       "   'Tomato-Free',\n",
       "   'Stove',\n",
       "   ''],\n",
       "  'id_': '0000009'},\n",
       " {'recipe_name': 'Corn & Bacon Hash',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '2 servings',\n",
       "  'recipe_ingredients': ['6 slice Thick-Cut Bacon',\n",
       "   '1 pound Red Potato',\n",
       "   '2 ear Corn',\n",
       "   '1 bunch Scallion',\n",
       "   '1/2 teaspoon Salt',\n",
       "   '1/4 teaspoon Ground Black Pepper',\n",
       "   '2 tablespoon Butter',\n",
       "   '2 Egg'],\n",
       "  'recipe_instructions': 'Thinly slice the Scallion (1 bunch). Cut the Red Potato (1 pound) into small cubes. Cut the kernels from the Corn (2 ear). Dice the Thick-Cut Bacon (6 slice).\\nCook bacon in a large frying pan over medium heat until the fat is rendered. Once it is crisp, use a slotted spoon to remove the bacon to a plate lined with paper towels.\\nLeave the fat in the pan and add the potatoes. Increase the heat to medium-high. Season with half of the Salt (1/2 teaspoon) and Ground Black Pepper (1/4 teaspoon). Cook for 15 to 20 minutes or until potatoes can easily be pierced with a fork and are golden-brown on the the outside.\\nAdd corn to the skillet and bump the heat up just a bit. Cook the potatoes and corn together for 5 to 6 minutes, stirring frequently, until the corn browns a bit.\\nHeat a small frying pan over medium heat. Add the Butter (2 tablespoon) and crack the Egg (2) in, taking care not to break the yolk. Allow to cook for 1-2 minutes, then flip the egg to cook the other side. Cook for a minute more for an over-medium egg. Remove to a small plate.\\nWhile the eggs finish cooking, add the drained bacon and the green onions to the corn and potatoes and mix well. Turn off the heat and season to taste with the remaining salt and pepper.\\nServe a couple scoops of hash and top with one of the eggs.',\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/385d1878-283d-47e1-9f3f-e591298a92b6.jpg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'calories': '1230 calories',\n",
       "   'proteinContent': '37.0 g',\n",
       "   'fatContent': '32.0 g',\n",
       "   'carbohydrateContent': '205.9 g',\n",
       "   'fiberContent': '20.9 g',\n",
       "   'sugarContent': '3.8 g',\n",
       "   'sodiumContent': '973.3 mg',\n",
       "   'saturatedFatContent': '11.4 g',\n",
       "   'transFatContent': '0.0 g',\n",
       "   'cholesterolContent': '132.8 mg',\n",
       "   'unsaturatedFatContent': '12.0 g'},\n",
       "  'tags': ['Breakfast',\n",
       "   'Brunch',\n",
       "   'Pork',\n",
       "   'Eggs',\n",
       "   'Potatoes',\n",
       "   'Easy',\n",
       "   'American',\n",
       "   'Shellfish-Free',\n",
       "   'Gluten-Free',\n",
       "   'Soy-Free',\n",
       "   'Spring',\n",
       "   'Summer',\n",
       "   'Fish-Free',\n",
       "   'Peanut-Free',\n",
       "   'Tree Nut-Free',\n",
       "   'Sugar-Free',\n",
       "   'Tomato-Free',\n",
       "   'Stove',\n",
       "   ''],\n",
       "  'id_': '0000014'},\n",
       " {'recipe_name': 'The 1-Minute Breakfast Sandwich',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '1 serving',\n",
       "  'recipe_ingredients': ['1 English Muffin',\n",
       "   '1 Egg',\n",
       "   '1 slice Cheese',\n",
       "   'to taste Fresh Spinach',\n",
       "   'to taste Carrot',\n",
       "   'to taste Alfalfa Sprouts',\n",
       "   'to taste Butter',\n",
       "   'to taste Mayonnaise',\n",
       "   'to taste Sea Salt',\n",
       "   'to taste Ground Black Pepper'],\n",
       "  'recipe_instructions': 'Place a small pat of Ground Black Pepper (to taste) at the bottom of a small round microwave-safe dish. We like to use our 4 1/2-inch ramekin. Crack an Sea Salt (to taste) over the top. Add Egg (1) and Butter (to taste). Cover dish and microwave for 20 to 30 seconds.\\nMeanwhile place English Muffin (1) into your toaster and toast.\\nSpread Mayonnaise (to taste) over both side of the toasted muffin. Run a butter knife around the edge of the egg dish to release. Add it to the muffin. Add the Cheese (1 slice), Fresh Spinach (to taste), Carrot (to taste), and Alfalfa Sprouts (to taste).\\nTop with the other half of the muffin. Wrap in parchment and away you go!',\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/93e294f3-99e8-4953-a4b6-09b452fd4fa6.jpg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'calories': '310 calories',\n",
       "   'proteinContent': '17.7 g',\n",
       "   'fatContent': '15.3 g',\n",
       "   'carbohydrateContent': '26.9 g',\n",
       "   'fiberContent': '2.1 g',\n",
       "   'sugarContent': '2.2 g',\n",
       "   'sodiumContent': '649.5 mg',\n",
       "   'saturatedFatContent': '6.9 g',\n",
       "   'transFatContent': '0.0 g',\n",
       "   'cholesterolContent': '214.4 mg',\n",
       "   'unsaturatedFatContent': '3.2 g'},\n",
       "  'tags': ['Sandwich',\n",
       "   'Breakfast',\n",
       "   'Brunch',\n",
       "   'Vegetarian',\n",
       "   'Low-Carb',\n",
       "   'Pescatarian',\n",
       "   'Eggs',\n",
       "   'Easy',\n",
       "   'Quick',\n",
       "   'American',\n",
       "   'Shellfish-Free',\n",
       "   'Full Meal',\n",
       "   'Beginner',\n",
       "   'Soy-Free',\n",
       "   'Microwave',\n",
       "   'Fish-Free',\n",
       "   'Peanut-Free',\n",
       "   'Tree Nut-Free',\n",
       "   'Sugar-Free',\n",
       "   'Tomato-Free',\n",
       "   'Microwave',\n",
       "   ''],\n",
       "  'id_': '0000017'},\n",
       " {'recipe_name': 'Baked Cheesecake',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '1 serving',\n",
       "  'recipe_ingredients': ['125 gram Butter',\n",
       "   '50 gram Caster Sugar',\n",
       "   '150 gram All-Purpose Flour',\n",
       "   '30 gram Corn Flour',\n",
       "   '1 teaspoon Vanilla Essence',\n",
       "   '1 pinch Salt',\n",
       "   '500 gram Cream Cheese',\n",
       "   '150 gram Granulated Sugar',\n",
       "   '7 Egg',\n",
       "   '150 gram Sour Cream',\n",
       "   '5 gram Vanilla Essence',\n",
       "   '1 Lemon'],\n",
       "  'recipe_instructions': 'Put Butter (125 gram), Caster Sugar (50 gram), All-Purpose Flour (150 gram), Corn Flour (30 gram), Vanilla Essence (1 teaspoon), and Salt (1 pinch) in the bowl of a stand mixer, with the beater attachment. Mix on low speed until dough forms, don’t over mix.\\nFlatten into a disc, wrap with cling film and refrigerate for 30 minutes.\\nPreheat the oven to 180 degrees C (350 degrees F) steam bake.\\nPut Cream Cheese (500 gram), Granulated Sugar (150 gram), Egg (7), Sour Cream (150 gram), Vanilla Essence (5 gram), Lemon (1) into the bowl of a stand mixer, use the whisk attachment on slow speed until the mixture is smooth.\\nRoll pastry to about 2 to 3-millimeters thick on baking paper in a baking tray. Dock well, make sure pastry is larger than the cake ring.\\nPut the baking tray into shelf 2 and bake for 15 minutes.\\nAllow to cool slightly, press the cake ring into a disc and allow to cool completely, it will be very fragile. Reduce the oven temperature to 130 degrees C (270 degrees F).\\nPut the pastry on the greased and parchment-lined cake tin base, line the sides of the cake ring, and clamp.\\nPour in filling and bake for 35 minutes.\\nAfter 35 minutes, turn off the oven and keep the door closed for 1 hour. After that leave a gap in the oven door for another half hour. Take the cheesecake out of the oven and cool completely before putting it into the fridge.\\nAllow to cool completely before cutting, leaving overnight in the refrigerator is best. Serve.',\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/8b1073e8-de06-4f2e-8715-1b563363ad36.jpg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'calories': '4917 calories',\n",
       "   'proteinContent': '98.4 g',\n",
       "   'fatContent': '334.1 g',\n",
       "   'carbohydrateContent': '386.7 g',\n",
       "   'sugarContent': '233.7 g',\n",
       "   'sodiumContent': '2354.3 mg',\n",
       "   'saturatedFatContent': '195.3 g',\n",
       "   'cholesterolContent': '2150.2 mg',\n",
       "   'fiberContent': '8.6 g',\n",
       "   'transFatContent': '6.0 g',\n",
       "   'unsaturatedFatContent': '105.8 g'},\n",
       "  'tags': ['Dessert',\n",
       "   'Vegetarian',\n",
       "   'Pescatarian',\n",
       "   'Eggs',\n",
       "   'Cheese',\n",
       "   'Baked Goods',\n",
       "   'Baking',\n",
       "   'American',\n",
       "   'Shellfish-Free',\n",
       "   'Weekend Project',\n",
       "   'Soy-Free',\n",
       "   'Entertaining',\n",
       "   'Stand Mixer',\n",
       "   'Fish-Free',\n",
       "   'Fridge',\n",
       "   'Peanut-Free',\n",
       "   'Tree Nut-Free',\n",
       "   'Tomato-Free',\n",
       "   'Oven',\n",
       "   'Electrolux APAC',\n",
       "   ''],\n",
       "  'id_': '0000018'},\n",
       " {'recipe_name': 'Keto Sausage and Egg McMuffin',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '1 serving',\n",
       "  'recipe_ingredients': ['3 tablespoon Almond Flour',\n",
       "   '1/2 teaspoon Psyllium Powder',\n",
       "   '1/2 teaspoon Baking Powder',\n",
       "   '1 pinch Salt',\n",
       "   '1 tablespoon Butter',\n",
       "   '1 Large Egg',\n",
       "   '1 pound Ground Pork',\n",
       "   '1 teaspoon Ground Sage',\n",
       "   '1 teaspoon Dried Rosemary',\n",
       "   '1 teaspoon Salt',\n",
       "   '1 teaspoon Ground Black Pepper',\n",
       "   '1/8 teaspoon Chili Powder',\n",
       "   '1 tablespoon Olive Oil',\n",
       "   '2 Large Egg',\n",
       "   '1 slice Cheddar Cheese'],\n",
       "  'recipe_instructions': 'To make the Keto Bread, add Almond Flour (3 tablespoon), Psyllium Powder (1/2 teaspoon), and Baking Powder (1/2 teaspoon) into a jug or bowl. Season with Salt (1 pinch). Mix everything until well combined.\\nAdd in Butter (1 tablespoon) and a Large Egg (1). Mix the dry and wet ingredients really well until smooth like a cake batter.\\nNow grease a ramekin with butter and add in the mixture, smoothing out all sides and tapping the ramekin to avoid large air pockets.\\nPlace into the microwave on high for 90 seconds, when you bring it out it will have shrunk in from the sides and risen slightly. Carefully remove the muffin and leave it aside.\\nIn the same sized ramekin that you used for the bread, grease the outside with butter, crack the Large Egg (2) into it, and gently break up the yolks.\\nMicrowave the eggs on medium for 60-90 seconds. Again it will shrink away from the sides and can be easily removed.\\nFor the sausage, into a bowl add in the Salt (1 teaspoon), season with Dried Rosemary (1 teaspoon), Ground Pork (1 pound), Chili Powder (1/8 teaspoon), and finally season with Ground Sage (1 teaspoon) and Ground Black Pepper (1 teaspoon). Mix gently with a fork, don’t over mix otherwise it will become tough and dry when we cook them.\\nRoll into balls and shape into patties the size of the ramekins used for the bread and eggs.\\nIn a nonstick pan over medium to high heat, add in Olive Oil (1 tablespoon) and the sausage patty. Cook the sausage patty for 3 minutes on each side. You’re after a nice crust on the outside but juicy and tender in the middle.\\nRemove the patty and leave to rest for 1 minute.\\nIn a nonstick pan, cut the bread in half and toast the muffin.\\nTo assemble, on the muffin, place the sausage patty, the egg, Cheddar Cheese (1 slice), and top with the other half of the muffin. Serve immediately.',\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/2a4aec1f-edeb-49f5-be20-33477d41e5af.jpg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'saturatedFatContent': '57.0 g',\n",
       "   'calories': '1924 calories',\n",
       "   'proteinContent': '109.3 g',\n",
       "   'fiberContent': '4.4 g',\n",
       "   'carbohydrateContent': '9.2 g',\n",
       "   'fatContent': '160.5 g',\n",
       "   'sugarContent': '1.0 g',\n",
       "   'sodiumContent': '3327.9 mg',\n",
       "   'transFatContent': '0 g',\n",
       "   'cholesterolContent': '1021.2 mg',\n",
       "   'unsaturatedFatContent': '79.7 g'},\n",
       "  'tags': ['Lunch',\n",
       "   'Dinner',\n",
       "   'Main Dish',\n",
       "   'Quick and Easy',\n",
       "   'Eggs',\n",
       "   'Cheese',\n",
       "   'Weeknight Dinners',\n",
       "   'Bread',\n",
       "   '30 or Less',\n",
       "   'Easy',\n",
       "   'Quick',\n",
       "   'American',\n",
       "   'Shellfish-Free',\n",
       "   'Gluten-Free',\n",
       "   'Soy-Free',\n",
       "   'Game Day',\n",
       "   \"Father's Day\",\n",
       "   'Microwave',\n",
       "   'Fish-Free',\n",
       "   'Peanut-Free',\n",
       "   'Grain-Free',\n",
       "   'Sugar-Free',\n",
       "   'Tomato-Free',\n",
       "   'Stove',\n",
       "   ''],\n",
       "  'id_': '0000020'},\n",
       " {'recipe_name': 'Croque-Monsieur With Poached Eggs (Croque-Madame)',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '2 servings',\n",
       "  'recipe_ingredients': ['2 slice Bread',\n",
       "   '4 slice Black Forest Ham',\n",
       "   'to taste Gruyère Cheese',\n",
       "   'to taste Fresh Thyme Leaves',\n",
       "   '1 tablespoon Butter',\n",
       "   '2 tablespoon Onion',\n",
       "   'to taste Kosher Salt',\n",
       "   '1 tablespoon All-Purpose Flour',\n",
       "   '1 cup Milk',\n",
       "   '1 Bay Leaf',\n",
       "   '2 Egg',\n",
       "   'to taste Distilled White Vinegar',\n",
       "   'to taste Freshly Ground Black Pepper'],\n",
       "  'recipe_instructions': \"First, prepare pot for eggs: Fill a shallow saucepan with 2-3 inches water and bring to a simmer.\\nThen, prepare the béchamel: In a medium saucepan over medium heat, melt the Butter (1 tablespoon).\\nAdd the Onion (2 tablespoon) and the Kosher Salt (to taste) and cook about 5 to 7 minutes or until the onion is soft but has not begun to color.\\nTurn the heat to very low, add the All-Purpose Flour (1 tablespoon) and stir to combine it with the onion and butter.\\nContinue to cook over low heat until the flour is absorbed, stirring constantly so that it doesn't brown, about 2 minutes or so. Slowly stir in the Milk (1 cup). Drop in the Bay Leaf (1).\\nOver medium to medium-high heat, bring the mixture to a boil then reduce the heat to its lowest setting and cook for about 15 minutes, stirring occasionally to prevent the sauce from burning on the bottom of the pan.\\nTaste and cook longer if the taste of raw flour is still detectable. The mixture should be thick, but if it's too thick and becoming difficult to stir, you'll need to whisk in a little more milk. Remove the bay leaf and discard.\\nMeanwhile, preheat the broiler. Place the slices of Bread (2 slice) on a rack on a sheet pan (or a broiling pan) and broil them about a minute on each side. Remove pan from the oven.\\nSpread about 1 tablespoon of béchamel over each slice of bread. Top with Black Forest Ham (4 slice). Top with Gruyère Cheese (to taste). Set aside.\\nCrack Egg (2) into a small bowl or ramekin. Add Distilled White Vinegar (to taste) into the pot of simmering shallow water. Adjust the heat so that the water is barely simmering — get the water to a simmer, then turn it down so you don't see any bubbles.\\nUse the handle of a wooden spoon to make a whirlpool in the water, then drop one egg into the center of the whirlpool. Repeat with the other egg. Adjust the heat to keep the water just below a simmer. Set the timer for 3 minutes.\\nWhen the eggs have cooked for 3 minutes, place the toasts under the broiler and cook until the cheese is bubbling and starting to brown. Remove from the oven. Sprinkle with the Fresh Thyme Leaves (to taste).\\nMeanwhile, using a slotted spoon, lift one egg up from the water and shake it. The yolk should jiggle a little bit, but shouldn't look too loose. When the eggs look cooked to your liking, remove them with a slotted spoon and transfer to a paper towel-lined plate.\\nTop each sandwich with a poached egg. Sprinkle with a pinch of Kosher Salt (to taste) and fresh Freshly Ground Black Pepper (to taste).\",\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/e74cae36-f763-473b-b714-10a7a8e8915c.jpg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'calories': '191 calories',\n",
       "   'proteinContent': '11.2 g',\n",
       "   'fatContent': '7.9 g',\n",
       "   'carbohydrateContent': '18.1 g',\n",
       "   'fiberContent': '0.8 g',\n",
       "   'sugarContent': '5.4 g',\n",
       "   'sodiumContent': '318.0 mg',\n",
       "   'saturatedFatContent': '3.7 g',\n",
       "   'transFatContent': '0.0 g',\n",
       "   'cholesterolContent': '113.8 mg',\n",
       "   'unsaturatedFatContent': '2.9 g'},\n",
       "  'tags': ['Sandwich',\n",
       "   'Breakfast',\n",
       "   'Lunch',\n",
       "   'Brunch',\n",
       "   'Main Dish',\n",
       "   'Low-Carb',\n",
       "   'Eggs',\n",
       "   'Sauce',\n",
       "   'American',\n",
       "   'Shellfish-Free',\n",
       "   'Advanced',\n",
       "   'French',\n",
       "   'Soy-Free',\n",
       "   'Intermediate',\n",
       "   'Fall',\n",
       "   'Winter',\n",
       "   'Fish-Free',\n",
       "   'Peanut-Free',\n",
       "   'Tree Nut-Free',\n",
       "   'Sugar-Free',\n",
       "   'International',\n",
       "   'Tomato-Free',\n",
       "   'Oven',\n",
       "   'Stove',\n",
       "   ''],\n",
       "  'id_': '0000022'},\n",
       " {'recipe_name': 'Tacottata',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '4 servings',\n",
       "  'recipe_ingredients': ['1 pound Tortilla Chips',\n",
       "   '1 pound Lean Ground Beef',\n",
       "   '1 carton Egg Beaters',\n",
       "   '10 ounce Queso Fresco',\n",
       "   '1 cup Shredded Cheddar Cheese',\n",
       "   '1 can Ro-Tel® Diced Tomatoes & Green Chilies',\n",
       "   '1/2 cup Onion',\n",
       "   '1/2 cup Egg Beaters',\n",
       "   '1 package Taco Seasoning',\n",
       "   'to taste Lettuce',\n",
       "   '1/4 cup Canned Diced Tomatoes',\n",
       "   '1 cup Sour Cream',\n",
       "   '1 Jalapeño Pepper',\n",
       "   'to taste Fresh Cilantro',\n",
       "   'to taste Hot Sauce',\n",
       "   'as needed Nonstick Cooking Spray',\n",
       "   'to taste Salt',\n",
       "   'to taste Ground Black Pepper'],\n",
       "  'recipe_instructions': 'In a medium-large pan, cook up the Lean Ground Beef (1 pound) with some Salt (to taste) and Ground Black Pepper (to taste).\\nAdd in the Onion (1/2 cup) and Taco Seasoning (1 package). Set aside to cool completely.\\nIn a food processor (or with a zip bag and aggression) crush up the Tortilla Chips (1 pound) into coarse crumbs.\\nAdd in the Egg Beaters (1/2 cup) and pulse to combine.\\nSpray your frittata pan with Nonstick Cooking Spray (as needed) and gently press the Tortilla crumbs evenly into the pan, working them up the sides. Bake it in the oven at 350 degrees F (180 degrees C) for about 10-12 minutes, just until it’s slightly golden. Set aside.\\nAdd in the Jalapeño Pepper (1/2) as well, if you prefer extra heat.\\nFold in half of the Queso Fresco (10 ounce), and Shredded Cheddar Cheese (1 cup).\\nNow in a large bowl combine the Egg Beaters (1 carton) with the fully-cooked seasoned meat.\\nStir in the (drained) can of Ro-Tel® Diced Tomatoes & Green Chilies (1 can) and mix it all up. Pour the egg mixture into the tortilla crust, making sure not to go all the way up to the top (leave maybe a 1.8-inch lip around).\\nBake it at 350 degrees F (180 degrees C) for about 20 minutes, or until the eggs are slightly golden on top and firm all the way through.\\nNow, top it with the Sour Cream (1 cup), Fresh Cilantro (to taste), more queso fresco cheese, Jalapeño Pepper (1/2), Lettuce (to taste), some crumbled chips, and Canned Diced Tomatoes (1/4 cup). Serve with some Hot Sauce (to taste).',\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/c8377cec-841c-419b-a848-a341adf987d7.jpeg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'calories': '334 calories',\n",
       "   'proteinContent': '20.6 g',\n",
       "   'fatContent': '16.8 g',\n",
       "   'carbohydrateContent': '24.9 g',\n",
       "   'fiberContent': '1.8 g',\n",
       "   'sugarContent': '2.4 g',\n",
       "   'sodiumContent': '598.7 mg',\n",
       "   'saturatedFatContent': '7.4 g',\n",
       "   'transFatContent': '0.5 g',\n",
       "   'cholesterolContent': '47.7 mg',\n",
       "   'unsaturatedFatContent': '7.4 g'},\n",
       "  'tags': ['Lunch',\n",
       "   'Dinner',\n",
       "   'Brunch',\n",
       "   'Appetizers',\n",
       "   'Main Dish',\n",
       "   'Beef',\n",
       "   'Eggs',\n",
       "   'Cheese',\n",
       "   'Vegetables',\n",
       "   'Baking',\n",
       "   'American',\n",
       "   'Shellfish-Free',\n",
       "   'Weekend Project',\n",
       "   'Egg-Free',\n",
       "   'Soy-Free',\n",
       "   'Intermediate',\n",
       "   'Entertaining',\n",
       "   'Fish-Free',\n",
       "   'Peanut-Free',\n",
       "   'Tree Nut-Free',\n",
       "   'Sugar-Free',\n",
       "   'Oven',\n",
       "   'Stove',\n",
       "   ''],\n",
       "  'id_': '0000024'},\n",
       " {'recipe_name': 'Egg in a Hole',\n",
       "  'recipe_time': 0,\n",
       "  'recipe_yields': '1 serving',\n",
       "  'recipe_ingredients': ['1 tablespoon Salted Butter',\n",
       "   '1 slice Whole Wheat Bread',\n",
       "   '1 Egg',\n",
       "   'to taste Salt',\n",
       "   'to taste Ground Black Pepper'],\n",
       "  'recipe_instructions': 'Heat Salted Butter (1 tablespoon) in a small skillet over medium heat.\\nUse a round cookie cutter or biscuit cutter to cut a hole out of the Whole Wheat Bread (1 slice).\\nOnce butter has fully melted and has begun to bubble slightly, place the bread into the skillet and the center piece to the side. Carefully crack the Egg (1) into the hole in the bread.\\nSprinkle a TINY bit of Salt (to taste) and Ground Black Pepper (to taste) on the egg. Cook for about two minutes.\\nThen carefully slide a spatula under the bread and flip. Sprinkle a bit more pepper on the second side, then flip the cut-out circle to grill the other side.\\nLift the bread onto a plate and eat. Use your little center circle to soak up the warm, luscious yolk!',\n",
       "  'recipe_image': 'https://www.sidechef.com/recipe/9962c2f5-ad92-4acb-a176-4255f1cda802.jpg?d=1408x1120',\n",
       "  'blogger': 'sidechef.com',\n",
       "  'recipe_nutrients': {'calories': '298 calories',\n",
       "   'proteinContent': '12.5 g',\n",
       "   'fatContent': '17.9 g',\n",
       "   'carbohydrateContent': '21.7 g',\n",
       "   'sugarContent': '2.4 g',\n",
       "   'sodiumContent': '388.3 mg',\n",
       "   'saturatedFatContent': '9.2 g',\n",
       "   'transFatContent': '0.5 g',\n",
       "   'cholesterolContent': '212.8 mg',\n",
       "   'fiberContent': '3.0 g',\n",
       "   'unsaturatedFatContent': '7.2 g'},\n",
       "  'tags': ['Breakfast',\n",
       "   'Brunch',\n",
       "   'Vegetarian',\n",
       "   'Low-Carb',\n",
       "   'Pescatarian',\n",
       "   'Eggs',\n",
       "   'Kid-Friendly',\n",
       "   'Easy',\n",
       "   'Quick',\n",
       "   'American',\n",
       "   'Shellfish-Free',\n",
       "   'Beginner',\n",
       "   'Soy-Free',\n",
       "   'Fish-Free',\n",
       "   'Peanut-Free',\n",
       "   'Tree Nut-Free',\n",
       "   'Sugar-Free',\n",
       "   'Tomato-Free',\n",
       "   'Stove',\n",
       "   ''],\n",
       "  'id_': '0000037'}]"
      ]
     },
     "execution_count": 173,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def filter_recipes(file_name):\n",
    "    with open(file_name, 'r') as file:\n",
    "        recipes = json.load(file)\n",
    "\n",
    "    high_protein_recipes = []\n",
    "    for recipe in recipes:\n",
    "        protein_content = recipe['recipe_nutrients'].get('proteinContent', '0 g')\n",
    "        protein_value = float(protein_content.split(' ')[0])\n",
    "        if protein_value > 10:\n",
    "            high_protein_recipes.append(recipe)\n",
    "        if len(high_protein_recipes) >= 10:\n",
    "            break\n",
    "\n",
    "    return high_protein_recipes\n",
    "\n",
    "\n",
    "filter_recipes(\"recipes.json\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "chatbot-env",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}