Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,969 Bytes
a68743b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from pathlib import Path
import numpy as np
import pandas as pd
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from src.data.utils import pre_caption
from src.tools.files import read_txt
normalize = transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)
)
transform = transforms.Compose(
[
transforms.Resize((384, 384), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
normalize,
]
)
class ImageDataset(Dataset):
def __init__(
self,
image_dir,
img_ext: str = "png",
save_dir=None,
):
self.image_dir = Path(image_dir)
self.img_pths = self.image_dir.glob(f"*.{img_ext}")
self.id2pth = {img_pth.stem: img_pth for img_pth in self.img_pths}
self.video_ids = list(self.id2pth.keys())
if save_dir is not None:
save_dir = Path(save_dir)
done_paths = list(save_dir.glob("*.pth"))
done_paths = {p.stem for p in done_paths}
print(f"video_ids: {len(self.video_ids)} - {len(done_paths)} = ", end="")
self.video_ids = list(set(self.video_ids) - done_paths)
print(len(self.video_ids))
self.video_ids.sort()
if len(self.video_ids) == 0:
print("All videos are done")
exit()
def __len__(self):
return len(self.video_ids)
def __getitem__(self, index):
video_id = self.video_ids[index]
img_pth = self.id2pth[video_id]
img = Image.open(img_pth).convert("RGB")
img = transform(img)
return img, video_id
class VideoDataset(Dataset):
def __init__(
self,
video_dir,
todo_ids=None,
shard_id=0,
num_shards=1,
frames_video=15,
extention="mp4",
save_dir=None,
):
self.video_dir = Path(video_dir)
if isinstance(todo_ids, (str, Path)):
todo_ids = read_txt(todo_ids)
found_paths = list(video_dir.glob(f"*/*.{extention}"))
if todo_ids is not None:
video_paths = [video_dir / f"{v}.{extention}" for v in todo_ids]
video_paths = list(set(video_paths) & set(found_paths))
else:
video_paths = found_paths
video_paths.sort()
self.id2path = {pth.parent.name + "/" + pth.stem: pth for pth in video_paths}
self.video_ids = list(self.id2path.keys())
self.video_ids.sort()
if save_dir is not None:
save_dir = Path(save_dir)
done_paths = list(save_dir.glob("*/*.pth"))
done_paths = {p.parent.name + "/" + p.stem for p in done_paths}
print(f"video_ids: {len(self.video_ids)} - {len(done_paths)} = ", end="")
self.video_ids = list(set(self.video_ids) - done_paths)
print(len(self.video_ids))
self.video_ids.sort()
if len(self.video_ids) == 0:
print("All videos are done")
exit()
assert len(self.video_ids) > 0, f"video_ids is empty"
# shard the dataset
n_videos = len(self.video_ids)
self.video_ids = self.video_ids[
shard_id * n_videos // num_shards : (shard_id + 1) * n_videos // num_shards
]
self.frames_video = frames_video
def __len__(self):
return len(self.video_ids)
def __getitem__(self, index):
video_id = self.video_ids[index]
video_path = self.id2path[video_id]
frames, f_idxs = get_video_frames(video_path, self.frames_video)
frames = [transform(frame) for frame in frames]
frames = torch.stack(frames, dim=0)
f_idxs = torch.tensor(f_idxs)
return video_id, f_idxs, frames
class TextDataset(Dataset):
def __init__(
self,
csv_path,
max_words=30,
):
self.df = pd.read_csv(csv_path)
self.texts = list(set(self.df["edit"].unique().tolist()))
self.texts.sort()
self.max_words = max_words
def __len__(self):
return len(self.texts)
def __getitem__(self, index):
txt = self.texts[index]
txt = pre_caption(txt, self.max_words)
return txt
def get_video_frames(video_pth, frames_video=15):
import cv2
video_pth = str(video_pth)
# use OpenCV to read the video
cap = cv2.VideoCapture(video_pth)
# get the total number of frames in the video
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_idxs = sample_frames(total_frames, frames_video)
frames = []
f_idxs = []
for frame_idx in frame_idxs:
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
ret, frame = cap.read()
if not ret or frame is None:
print(f"Video {video_pth} is corrupted")
frames = [
Image.fromarray(np.zeros((384, 384, 3)).astype(np.uint8))
] * frames_video
f_idxs = [-1] * frames_video
return frames, f_idxs
frames.append(Image.fromarray(frame))
f_idxs.append(frame_idx)
# pad frames to have the same number of frames
n_frames = len(frames)
if n_frames < frames_video:
frames += [Image.fromarray(np.zeros((384, 384, 3)).astype(np.uint8))] * (
frames_video - n_frames
)
# Add -1 to f_idxs for the remaining frames
f_idxs += [-1] * (frames_video - len(f_idxs))
return frames, f_idxs
def sample_frames(vlen, frames_per_video=15):
acc_samples = min(vlen, frames_per_video)
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
ranges = []
for idx, interv in enumerate(intervals[:-1]):
ranges.append((interv, intervals[idx + 1] - 1))
frame_idxs = [(x[0] + x[1]) // 2 for x in ranges]
return frame_idxs
|