Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 22,691 Bytes
7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 a68743b 7e7a010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import eventlet
import pandas as pd
import json
from PIL import Image
import numpy as np
import os
from pathlib import Path
import torch
import torch.nn.functional as F
# from src.data.embs import ImageDataset
from src.model.blip_embs import blip_embs
from src.data.transforms import transform_test
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import gradio as gr
# import spaces
from langchain.chains import ConversationChain
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.runnables import RunnableWithMessageHistory
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from flask import Flask, request, render_template
from flask_cors import CORS
from flask_socketio import SocketIO, emit
import json
from openai import OpenAI
# GROQ_API_KEY = os.getenv("GROQ_API_KEY")
load_dotenv(".env")
USER_AGENT = os.getenv("USER_AGENT")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
SECRET_KEY = os.getenv("SECRET_KEY")
# Set environment variables
os.environ['USER_AGENT'] = USER_AGENT
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
os.environ["TOKENIZERS_PARALLELISM"] = 'true'
# Initialize Flask app and SocketIO with CORS
app = Flask(__name__)
CORS(app)
app.config['MAX_CONTENT_LENGTH'] = 1024 * 1024 * 1024
socketio = SocketIO(app, cors_allowed_origins="*", logger=True, max_http_buffer_size=1024 * 1024 * 1024)
app.config['SECRET_KEY'] = SECRET_KEY
# Initialize LLM
llm = ChatGroq(model="llama-3.1-8b-instant", temperature=0, max_tokens=1024, max_retries=2)
# Initialize Router
router = ChatGroq(model="llama-3.2-3b-preview", temperature=0, max_tokens=1024, max_retries=2, model_kwargs={"response_format": {"type": "json_object"}})
# Initialize Router
answer_formatter = ChatGroq(model="llama-3.1-8b-instant", temperature=0, max_tokens=1024, max_retries=2)
# Initialized recommendation LLM
client = OpenAI()
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all(input_ids[:, -len(stop):] == stop).item():
return True
return False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_blip_config(model="base"):
config = dict()
if model == "base":
config[
"pretrained"
] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth "
config["vit"] = "base"
config["batch_size_train"] = 32
config["batch_size_test"] = 16
config["vit_grad_ckpt"] = True
config["vit_ckpt_layer"] = 4
config["init_lr"] = 1e-5
elif model == "large":
config[
"pretrained"
] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_retrieval_coco.pth"
config["vit"] = "large"
config["batch_size_train"] = 16
config["batch_size_test"] = 32
config["vit_grad_ckpt"] = True
config["vit_ckpt_layer"] = 12
config["init_lr"] = 5e-6
config["image_size"] = 384
config["queue_size"] = 57600
config["alpha"] = 0.4
config["k_test"] = 256
config["negative_all_rank"] = True
return config
print("Creating model")
config = get_blip_config("large")
model = blip_embs(
pretrained=config["pretrained"],
image_size=config["image_size"],
vit=config["vit"],
vit_grad_ckpt=config["vit_grad_ckpt"],
vit_ckpt_layer=config["vit_ckpt_layer"],
queue_size=config["queue_size"],
negative_all_rank=config["negative_all_rank"],
)
model = model.to(device)
model.eval()
transform = transform_test(384)
df = pd.read_json("my_recipes.json")
tar_img_feats = []
for _id in df["id_"].tolist():
tar_img_feats.append(torch.load("./datasets/sidechef/blip-embs-large/{:07d}.pth".format(_id)).unsqueeze(0))
tar_img_feats = torch.cat(tar_img_feats, dim=0)
class Chat:
def __init__(self, model, transform, dataframe, tar_img_feats, device='cuda:0', stopping_criteria=None):
self.device = device
self.model = model
self.transform = transform
self.df = dataframe
self.tar_img_feats = tar_img_feats
self.img_feats = None
self.target_recipe = None
self.messages = []
if stopping_criteria is not None:
self.stopping_criteria = stopping_criteria
else:
stop_words_ids = [torch.tensor([2]).to(self.device)]
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
def encode_image(self, image_path):
img = Image.fromarray(image_path).convert("RGB")
img = self.transform(img).unsqueeze(0)
img = img.to(self.device)
img_embs = model.visual_encoder(img)
img_feats = F.normalize(model.vision_proj(img_embs[:, 0, :]), dim=-1).cpu()
self.img_feats = img_feats
self.get_target(self.img_feats, self.tar_img_feats)
def get_target(self, img_feats, tar_img_feats) :
score = (img_feats @ tar_img_feats.t()).squeeze(0).cpu().detach().numpy()
index = np.argsort(score)[::-1][0]
self.target_recipe = df.iloc[index]
def ask(self):
return json.dumps(self.target_recipe.to_json())
chat = Chat(model,transform,df,tar_img_feats, device)
def answer_generator(formated_input, session_id):
# QA system prompt and chain
qa_system_prompt = """
You are an AI assistant developed by Nutrigenics AI, specializing in intelligent recipe information retrieval and recipe suggestions. Your purpose is to help users by recommending recipes, providing detailed nutritional values, listing ingredients, offering step-by-step cooking instructions, and filtering recipes based on provide context ans user query.
Operational Guidelines:
1. Input Structure:
- Context: You may receive contextual information related to recipes, such as specific data sets, user preferences, dietary restrictions, or previously selected dishes.
- User Query: Users will pose questions or requests related to recipes, nutritional information, ingredient substitutions, cooking instructions, and more.
2. Response Strategy:
- Utilize Provided Context: If the context contains relevant information that addresses the user's query, base your response on this provided data to ensure accuracy and relevance.
- Respond to User Query Directly: If the context does not contain the necessary information to answer the user's query, kindly state that you do not have require information.
Core Functionalities:
- Nutritional Information: Accurately provide nutritional values for each recipe, including calories, macronutrients (proteins, fats, carbohydrates), and essential vitamins and minerals, using contextual data when available.
- Ingredient Details: List all ingredients required for recipes, including substitute options for dietary restrictions or ingredient availability, utilizing context when relevant.
- Step-by-Step Cooking Instructions: Deliver clear, easy-to-follow instructions for preparing and cooking meals, informed by any provided contextual data.
- Recipe Recommendations: Suggest dishes based on user preferences, dietary restrictions, available ingredients, and contextual data if provided.
Additional Instructions:
- Precision and Personalization: Always aim to provide precise, personalized, and relevant information to users based on both the provided context and their specific queries.
- Clarity and Coherence: Ensure that all responses are clear, well-structured, and easy to understand, facilitating a seamless user experience.
- Substitute Suggestions: When suggesting ingredient substitutes, consider user preferences and dietary restrictions outlined in the context or user query.
- Dynamic Adaptation: Adapt your responses dynamically based on whether the context is relevant to the user's current request, ensuring optimal use of available information.
Don't mention about context in the response, format the answer in a natural and friendly way.
Context:
{context}
"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
("human", "{input}")
]
)
# Create the base chain
base_chain = qa_prompt | llm | StrOutputParser()
# Wrap the chain with message history
question_answer_chain = RunnableWithMessageHistory(
base_chain,
lambda session_id: ChatMessageHistory(), # This creates a new history for each session
input_messages_key="input",
history_messages_key="chat_history"
)
response = question_answer_chain.invoke(formated_input, config={"configurable": {"session_id": session_id}})
return response
### Router
import json
from langchain_core.messages import HumanMessage, SystemMessage
def router_node(query):
# Prompt
router_instructions = """You are an expert at determining the appropriate task for a user’s question based on chat history and the current query context. You have two available tasks:
1. Retrieval: Fetch information based on user's chat history and current query.
2. Recommendation/Suggestion: Recommend recipes to users based on the query.
Return a JSON response with a single key named “task” indicating either “retrieval” or “recommendation” based on your decision.
"""
response = router.invoke(
[SystemMessage(content=router_instructions)]
+ [
HumanMessage(
content=query
)
]
)
res = json.loads(response.content)
return res['task']
def recommendation_node(query):
prompt = """
You are a helpful assistant that writes Python code to filter recipes from a JSON filr based o the user query. \n
JSON file path = 'recipes.json' \n
The JSON file is a list of recipes with the following structure: \n
{
"recipe_name": string,
"recipe_time": integer,
"recipe_yields": string,
"recipe_ingredients": list of ingredients,
"recipe_instructions": list of instruections,
"recipe_image": string,
"blogger": string,
"recipe_nutrients": JSON object with key value pairs such as "protein: 10g",
"tags": list of tags related to recipe
} \n
Here is the example of an recipe json object from the JSON data: \n
{
"recipe_name": "Asian Potato Salad with Seven Minute Egg",
"recipe_time": 0,
"recipe_yields": "4 servings",
"recipe_ingredients": [
"2 1/2 cup Multi-Colored Fingerling Potato",
"3/4 cup Celery",
"1/4 cup Red Onion",
"2 tablespoon Fresh Parsley",
"1/3 cup Mayonnaise",
"1 tablespoon Chili Garlic Sauce",
"1 teaspoon Hoisin Sauce",
"1 splash Soy Sauce",
"to taste Salt",
"to taste Ground Black Pepper",
"4 Egg"
],
"recipe_instructions": "Fill a large stock pot with water.\nAdd the Multi-Colored Fingerling Potato (2 1/2 cup) and bring water to a boil. Boil the potatoes for 20 minutes or until fork tender.\nDrain the potatoes and let them cool completely.\nMeanwhile, mix together in a small bowl Mayonnaise (1/3 cup), Chili Garlic Sauce (1 tablespoon), Hoisin Sauce (1 teaspoon), and Soy Sauce (1 splash).\nTo make the Egg (4), fill a stock pot with water and bring to a boil Gently add the eggs to the water and set a timer for seven minutes.\nThen move the eggs to an ice bath to cool completely. Once cooled, crack the egg slightly and remove the shell. Slice in half when ready to serve.\nNext, halve the cooled potatoes and place into a large serving bowl. Add the Ground Black Pepper (to taste), Celery (3/4 cup), Red Onion (1/4 cup), and mayo mixture. Toss to combine adding Salt (to taste) and Fresh Parsley (2 tablespoon).\nTop with seven minute eggs and serve. Enjoy!",
"recipe_image": "https://www.sidechef.com/recipe/eeeeeceb-493e-493d-8273-66c800821b13.jpg?d=1408x1120",
"blogger": "sidechef.com",
"recipe_nutrients": {
"calories": "80 calories",
"proteinContent": "2.1 g",
"fatContent": "6.2 g",
"carbohydrateContent": "3.9 g",
"fiberContent": "0.5 g",
"sugarContent": "0.4 g",
"sodiumContent": "108.0 mg",
"saturatedFatContent": "1.2 g",
"transFatContent": "0.0 g",
"cholesterolContent": "47.4 mg",
"unsaturatedFatContent": "3.8 g"
},
"tags": [
"Salad",
"Lunch",
"Brunch",
"Appetizers",
"Side Dish",
"Budget-Friendly",
"Vegetarian",
"Pescatarian",
"Eggs",
"Potatoes",
"Dairy-Free",
"Shellfish-Free"
]
} \n
Based on the user query, provide a Python function to filter the JSON data. The output of the function should be a list of json objects. \n
Recipe filtering instructions:
- If a user asked for the highest nutrient recipe such as "high protein or high calories" then filtered recipes should be the top highest recipes from all the recipes with high nutrient.
- sort or rearrange recipes based which recipes are more appropriate for the user.
Your output instructions:
- The function name should be filter_recipes. The input to the function should be file name.
- The length of output recipes should not be more than 6.
- Only give me output function. Do not call the function.
- Give the python function as a key named "code" in a json format.
- Do not include any other text with the output, only give python code.
- If you do not follow the above given instructions, the chat may be terminated.
"""
max_tries = 3
while True:
try:
# llm = ChatGroq(model="llama-3.1-8b-instant", temperature=0, max_tokens=1024, max_retries=2, model_kwargs={"response_format": {"type": "json_object"}})
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": prompt},
{
"role": "user",
"content": query
}
]
)
content = response.choices[0].message.content
res = json.loads(content)
script = res['code']
exec(script, globals())
filtered_recipes = filter_recipes('recipes.json')
if len(filtered_recipes) > 0:
return filtered_recipes
except Exception as e:
print(e)
if max_tries <= 0:
return []
else:
max_tries -= 1
return filtered_recipes
def answer_formatter_node(question, context):
prompt = f""" You are an highly clever question-answering assistant trained to provide clear and concise answers based on the user query and provided context.
Your task is to generated answers for the user query based on the context provided.
Instructions for your response:
1. Directly answer the user query using only the information provided in the context.
2. Ensure your response is clear and concise.
3. Mention only details related to the recipe, including the recipe name, instructions, nutrients, yield, ingredients, and image.
4. Do not include any information that is not related to the recipe context.
Please format an answer based on the following user question and context provided:
User Question:
{question}
Context:
{context}
"""
response = answer_formatter.invoke(
[SystemMessage(content=prompt)]
)
res = response.content
return res
CURR_CONTEXT = ''
# @spaces.GPU
def get_answer(image=[], message='', sessionID='abc123'):
global CURR_CONTEXT
if len(image) > 0:
try:
# Process the image and message here
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
chat = Chat(model,transform,df,tar_img_feats, device)
chat.encode_image(image)
data = chat.ask()
CURR_CONTEXT = data
formated_input = {
'input': message,
'context': data
}
response = answer_generator(formated_input, session_id=sessionID)
except Exception as e:
print(e)
response = {'content':"An error occurred while processing your request."}
elif len(image) == 0 and message is not None:
print("I am here")
task = router_node(message)
if task == 'retrieval':
recipes = recommendation_node(message)
print(recipes)
if not recipes:
response = {'content':"An error occurred while processing your request."}
response = answer_formatter_node(message, recipes)
else:
formated_input = {
'input': message,
'context': CURR_CONTEXT
}
response = answer_generator(formated_input, session_id=sessionID)
return response
# Function to handle WebSocket connection
@socketio.on('ping')
def handle_connect():
emit('Ping-return', {'message': 'Connected'}, room=request.sid)
# Function to handle WebSocket connection
@socketio.on('connect')
def handle_connect():
print(f"Client connected: {request.sid}")
# Function to handle WebSocket disconnection
@socketio.on('disconnect')
def handle_disconnect():
print(f"Client disconnected: {request.sid}")
import json
import base64
from PIL import Image
from io import BytesIO
import torchvision.transforms as transforms
# Dictionary to store incomplete image data by session
session_store = {}
@socketio.on('message')
def handle_message(data):
global session_store
global CURR_CONTEXT
context = "No data available"
session_id = request.sid
if session_id not in session_store:
session_store[session_id] = {'image_data': b"", 'message': None, 'image_received': False}
if 'message' in data:
session_store[session_id]['message'] = data['message']
# Handle image chunk data
if 'image' in data:
try:
# Append the incoming image chunk
session_store[session_id]['image_data'] += data['image']
except Exception as e:
print(f"Error processing image chunk: {str(e)}")
emit('response', "An error occurred while receiving the image chunk.", room=session_id)
return
if session_store[session_id]['image_data'] or session_store[session_id]['message']:
try:
image_bytes = session_store[session_id]['image_data']
# print("checkpoint 2")
if isinstance(image_bytes, str):
image_bytes = base64.b64decode(image_bytes)
image = Image.open(BytesIO(image_bytes))
image_array = np.array(image)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
chat = Chat(model, transform, df, tar_img_feats, device)
chat.encode_image(image_array)
context = chat.ask()
CURR_CONTEXT = context
message = data['message']
formated_input = {
'input': message,
'context': json.dumps(context)
}
# Invoke question_answer_chain and stream the response
response = answer_generator(formated_input, session_id=session_id)
emit('response', response, room=session_id)
except Exception as e:
print(f"Error processing image or message: {str(e)}")
emit('response', "An error occurred while processing your request.", room=session_id)
return
finally:
# Clear session data after processing
session_store.pop(session_id, None)
else:
message = data['message']
task = router_node(message)
print(task)
if task == 'retrieval':
formated_input = {
'input': message,
'context': json.dumps(CURR_CONTEXT)
}
response = answer_generator(formated_input, session_id=session_id)
emit('response', response, room=session_id)
else:
response = recommendation_node(message)
print(response)
# response = answer_formatter_node(message, recipes)
if response is None:
response = {'content':"An error occurred while processing your request."}
emit('json_response', response, room=session_id)
session_store.pop(session_id, None)
import requests
from PIL import Image
import numpy as np
from io import BytesIO
def download_image_to_numpy(url):
print("Image URL: ", url)
# Send a GET request to the URL to download the image
response = requests.get(url)
# Check if the request was successful
if response.status_code == 200:
# Open the image using PIL and convert it to RGB format
image = Image.open(BytesIO(response.content)).convert('RGB')
# Convert the image to a NumPy array
image_array = np.array(image)
return image_array
else:
raise Exception(f"Failed to download image. Status code: {response.status_code}")
@socketio.on('example')
def handle_message(data):
img_url = data['img_url']
message = data['message']
session_id = request.sid
image_array = download_image_to_numpy(img_url)
response = get_answer(image=image_array, message=message, sessionID=request.sid)
emit('response', response, room=session_id)
return response
# Home route
@app.route("/")
def index_view():
return render_template('chat.html')
# Main function to run the app
if __name__ == '__main__':
socketio.run(app, debug=False) |