Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,684 Bytes
a68743b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import torch
from torch import nn
from src.model.blip import create_vit, init_tokenizer, load_checkpoint
from src.model.med import BertConfig, BertModel
class BLIPEmbs(nn.Module):
def __init__(
self,
med_config="configs/med_config.json",
image_size=384,
vit="base",
vit_grad_ckpt=False,
vit_ckpt_layer=0,
embed_dim=256,
queue_size=57600,
negative_all_rank=False,
):
"""
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
"""
super().__init__()
self.visual_encoder, vision_width = create_vit(
vit, image_size, vit_grad_ckpt, vit_ckpt_layer
)
self.tokenizer = init_tokenizer()
med_config = BertConfig.from_json_file(med_config)
med_config.encoder_width = vision_width
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
text_width = self.text_encoder.config.hidden_size
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.queue_size = queue_size
self.temp = nn.Parameter(0.07 * torch.ones([]))
self.negative_all_rank = negative_all_rank
def blip_embs(pretrained="", **kwargs):
model = BLIPEmbs(**kwargs)
if pretrained:
model, msg = load_checkpoint(model, pretrained)
print("missing keys:")
print(msg.missing_keys)
assert len(msg.missing_keys) == 0, "Missing keys!"
return model
|