Ritesh-hf's picture
initial commit
a68743b
raw
history blame
6.37 kB
import json
from pathlib import Path
import torch
from lightning import LightningDataModule
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from src.data.transforms import transform_test, transform_train
from src.data.utils import pre_caption
Image.MAX_IMAGE_PIXELS = None # Disable DecompressionBombWarning
class FashionIQDataModule(LightningDataModule):
def __init__(
self,
batch_size: int,
num_workers: int = 4,
pin_memory: bool = True,
annotation: dict = {"train": "", "val": ""},
targets: dict = {"train": "", "val": ""},
img_dirs: dict = {"train": "", "val": ""},
emb_dirs: dict = {"train": "", "val": ""},
image_size: int = 384,
**kwargs, # type: ignore
) -> None:
super().__init__()
self.save_hyperparameters(logger=False)
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
self.transform_train = transform_train(image_size)
self.transform_test = transform_test(image_size)
self.data_train = FashionIQDataset(
transform=self.transform_train,
annotation=annotation["train"],
targets=targets["train"],
img_dir=img_dirs["train"],
emb_dir=emb_dirs["train"],
split="train",
)
self.data_val = FashionIQDataset(
transform=self.transform_test,
annotation=annotation["val"],
targets=targets["val"],
img_dir=img_dirs["val"],
emb_dir=emb_dirs["val"],
split="val",
)
def train_dataloader(self):
return DataLoader(
dataset=self.data_train,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=True,
drop_last=True,
)
def val_dataloader(self):
return DataLoader(
dataset=self.data_val,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
drop_last=False,
)
class FashionIQTestDataModule(LightningDataModule):
def __init__(
self,
batch_size: int,
annotation: str,
targets: str,
img_dirs: str,
emb_dirs: str,
num_workers: int = 4,
pin_memory: bool = True,
image_size: int = 384,
**kwargs, # type: ignore
) -> None:
super().__init__()
self.save_hyperparameters(logger=False)
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
self.transform_test = transform_test(image_size)
self.data_test = FashionIQDataset(
transform=self.transform_test,
annotation=annotation,
targets=targets,
img_dir=img_dirs,
emb_dir=emb_dirs,
split="test",
)
def test_dataloader(self):
return DataLoader(
dataset=self.data_test,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
drop_last=False,
)
class FashionIQDataset(Dataset):
def __init__(
self,
transform,
annotation: str,
targets: str,
img_dir: str,
emb_dir: str,
split: str,
max_words: int = 30,
) -> None:
super().__init__()
self.transform = transform
self.annotation_pth = annotation
assert Path(annotation).exists(), f"Annotation file {annotation} does not exist"
self.annotation = json.load(open(annotation, "r"))
assert Path(targets).exists(), f"Targets file {targets} does not exist"
self.targets = json.load(open(targets, "r"))
self.target_ids = list(set(self.targets))
self.target_ids.sort()
self.split = split
self.max_words = max_words
self.img_dir = Path(img_dir)
self.emb_dir = Path(emb_dir)
assert split in [
"train",
"val",
"test",
], f"Invalid split: {split}, must be one of train, val, or test"
assert self.img_dir.exists(), f"Image directory {img_dir} does not exist"
assert self.emb_dir.exists(), f"Embedding directory {emb_dir} does not exist"
self.id2int = {id: i for i, id in enumerate(self.target_ids)}
self.int2id = {i: id for i, id in enumerate(self.target_ids)}
self.pairid2ref = {
id: self.id2int[ann["candidate"]] for id, ann in enumerate(self.annotation)
}
self.pairid2tar = {
id: self.id2int[ann["target"]] for id, ann in enumerate(self.annotation)
}
img_pths = self.img_dir.glob("*.png")
emb_pths = self.emb_dir.glob("*.pth")
self.id2imgpth = {img_pth.stem: img_pth for img_pth in img_pths}
self.id2embpth = {emb_pth.stem: emb_pth for emb_pth in emb_pths}
for ann in self.annotation:
assert (
ann["candidate"] in self.id2imgpth
), f"Path to candidate {ann['candidate']} not found in {self.img_dir}"
assert (
ann["candidate"] in self.id2embpth
), f"Path to candidate {ann['candidate']} not found in {self.emb_dir}"
assert (
ann["target"] in self.id2imgpth
), f"Path to target {ann['target']} not found"
assert (
ann["target"] in self.id2embpth
), f"Path to target {ann['target']} not found"
def __len__(self) -> int:
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
reference_img_pth = self.id2imgpth[ann["candidate"]]
reference_img = Image.open(reference_img_pth).convert("RGB")
reference_img = self.transform(reference_img)
cap1, cap2 = ann["captions"]
caption = f"{cap1} and {cap2}"
caption = pre_caption(caption, self.max_words)
target_emb_pth = self.id2embpth[ann["target"]]
target_feat = torch.load(target_emb_pth).cpu()
return (reference_img, target_feat, caption, index)