Ritesh-hf's picture
initial commit
a68743b
raw
history blame
5.37 kB
import datetime
import time
from collections import OrderedDict
from pathlib import Path
import einops
import numpy as np
import torch
import torch.nn.functional as F
from src.tools.files import json_dump
class TestCirr:
def __init__(self):
pass
@staticmethod
@torch.no_grad()
def __call__(model, data_loader, fabric):
model.eval()
fabric.print("Computing features for test...")
start_time = time.time()
tar_img_feats = []
query_feats = []
pair_ids = []
for ref_img, tar_feat, caption, pair_id, *_ in data_loader:
pair_ids.extend(pair_id.cpu().numpy().tolist())
device = ref_img.device
ref_img_embs = model.visual_encoder(ref_img)
ref_img_atts = torch.ones(ref_img_embs.size()[:-1], dtype=torch.long).to(
device
)
text = model.tokenizer(
caption,
padding="longest",
truncation=True,
max_length=64,
return_tensors="pt",
).to(device)
# Shift encoder
encoder_input_ids = text.input_ids.clone()
encoder_input_ids[:, 0] = model.tokenizer.enc_token_id
query_embs = model.text_encoder(
encoder_input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=ref_img_embs,
encoder_attention_mask=ref_img_atts,
return_dict=True,
)
query_feat = query_embs.last_hidden_state[:, 0, :]
query_feat = F.normalize(model.text_proj(query_feat), dim=-1)
query_feats.append(query_feat.cpu())
# Encode the target image
tar_img_feats.append(tar_feat.cpu())
pair_ids = torch.tensor(pair_ids, dtype=torch.long)
query_feats = torch.cat(query_feats, dim=0)
tar_img_feats = torch.cat(tar_img_feats, dim=0)
if fabric.world_size > 1:
# Gather tensors from every process
query_feats = fabric.all_gather(query_feats)
tar_img_feats = fabric.all_gather(tar_img_feats)
pair_ids = fabric.all_gather(pair_ids)
query_feats = einops.rearrange(query_feats, "d b e -> (d b) e")
tar_img_feats = einops.rearrange(tar_img_feats, "d b e -> (d b) e")
pair_ids = einops.rearrange(pair_ids, "d b -> (d b)")
if fabric.global_rank == 0:
pair_ids = pair_ids.cpu().numpy().tolist()
assert len(query_feats) == len(pair_ids)
img_ids = [data_loader.dataset.pairid2ref[pair_id] for pair_id in pair_ids]
assert len(img_ids) == len(pair_ids)
id2emb = OrderedDict()
for img_id, tar_img_feat in zip(img_ids, tar_img_feats):
if img_id not in id2emb:
id2emb[img_id] = tar_img_feat
tar_feats = torch.stack(list(id2emb.values()), dim=0)
sims_q2t = query_feats @ tar_feats.T
# Create a mapping from pair_id to row index for faster lookup
pairid2index = {pair_id: i for i, pair_id in enumerate(pair_ids)}
# Create a mapping from target_id to column index for faster lookup
tarid2index = {tar_id: j for j, tar_id in enumerate(id2emb.keys())}
# Update the similarity matrix based on the condition
for pair_id, query_feat in zip(pair_ids, query_feats):
que_id = data_loader.dataset.pairid2ref[pair_id]
if que_id in tarid2index:
sims_q2t[pairid2index[pair_id], tarid2index[que_id]] = -100
sims_q2t = sims_q2t.cpu().numpy()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Evaluation time {}".format(total_time_str))
recalls = {}
recalls["version"] = "rc2"
recalls["metric"] = "recall"
recalls_subset = {}
recalls_subset["version"] = "rc2"
recalls_subset["metric"] = "recall_subset"
target_imgs = np.array(list(id2emb.keys()))
assert len(sims_q2t) == len(pair_ids)
for pair_id, query_sims in zip(pair_ids, sims_q2t):
sorted_indices = np.argsort(query_sims)[::-1]
query_id_recalls = list(target_imgs[sorted_indices][:50])
query_id_recalls = [
str(data_loader.dataset.int2id[x]) for x in query_id_recalls
]
recalls[str(pair_id)] = query_id_recalls
members = data_loader.dataset.pairid2members[pair_id]
query_id_recalls_subset = [
target
for target in target_imgs[sorted_indices]
if target in members
]
query_id_recalls_subset = [
data_loader.dataset.int2id[x] for x in query_id_recalls_subset
][:3]
recalls_subset[str(pair_id)] = query_id_recalls_subset
json_dump(recalls, "recalls_cirr.json")
json_dump(recalls_subset, "recalls_cirr_subset.json")
print(f"Recalls saved in {Path.cwd()} as recalls_cirr.json")
fabric.barrier()