Ritesh-hf commited on
Commit
499a430
·
verified ·
1 Parent(s): 8e935d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +109 -310
app.py CHANGED
@@ -27,9 +27,9 @@ from langchain_core.prompts import ChatPromptTemplate
27
  from langchain_groq import ChatGroq
28
 
29
  from dotenv import load_dotenv
30
- from flask import Flask, request, render_template, jsonify
31
  from flask_cors import CORS
32
-
33
 
34
  import json
35
  from openai import OpenAI
@@ -51,14 +51,13 @@ os.environ["TOKENIZERS_PARALLELISM"] = 'true'
51
  app = Flask(__name__)
52
  CORS(app)
53
  app.config['MAX_CONTENT_LENGTH'] = 1024 * 1024 * 1024
 
54
  app.config['SECRET_KEY'] = SECRET_KEY
55
 
 
56
  # Initialize LLM
57
  llm = ChatGroq(model="llama-3.1-8b-instant", temperature=0, max_tokens=1024, max_retries=2)
58
 
59
- # JSON response LLM
60
- json_llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, max_tokens=1024, max_retries=2, model_kwargs={"response_format": {"type": "json_object"}})
61
-
62
  # Initialize Router
63
  router = ChatGroq(model="llama-3.2-3b-preview", temperature=0, max_tokens=1024, max_retries=2, model_kwargs={"response_format": {"type": "json_object"}})
64
 
@@ -78,6 +77,7 @@ class StoppingCriteriaSub(StoppingCriteria):
78
  for stop in self.stops:
79
  if torch.all(input_ids[:, -len(stop):] == stop).item():
80
  return True
 
81
  return False
82
 
83
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -128,15 +128,11 @@ model = blip_embs(
128
 
129
  model = model.to(device)
130
  model.eval()
131
- print("Model Loaded !")
132
- print("="*50)
133
 
134
  transform = transform_test(384)
135
 
136
- print("Loading Data")
137
  df = pd.read_json("my_recipes.json")
138
 
139
- print("Loading Target Embedding")
140
  tar_img_feats = []
141
  for _id in df["id_"].tolist():
142
  tar_img_feats.append(torch.load("./datasets/sidechef/blip-embs-large/{:07d}.pth".format(_id)).unsqueeze(0))
@@ -145,7 +141,7 @@ tar_img_feats = torch.cat(tar_img_feats, dim=0)
145
 
146
  class Chat:
147
 
148
- def __init__(self, model, transform, dataframe, tar_img_feats, device='cuda', stopping_criteria=None):
149
  self.device = device
150
  self.model = model
151
  self.transform = transform
@@ -183,209 +179,30 @@ class Chat:
183
 
184
 
185
  chat = Chat(model,transform,df,tar_img_feats, device)
186
- print("Chat Initialized !")
187
-
188
- import secrets
189
- import string
190
-
191
- def generate_session_key():
192
- characters = string.ascii_letters + string.digits
193
- session_key = ''.join(secrets.choice(characters) for _ in range(8))
194
- return session_key
195
-
196
-
197
- def json_answer_generator(user_query, context):
198
- system_prompt = """
199
- Given a recipe context in JSON format, respond to user queries by extracting and returning the requested information in JSON format with an additional `"header"` key containing a response starter. Use the following rules:
200
-
201
- 1. **Recipe Information Extraction**:
202
- - If the user query explicitly requests specific recipe data (e.g., ingredients, nutrients, or instructions), return only those JSON objects from the provided recipe context.
203
- - For example, if the user asks, “What are the ingredients?” or “Show me the nutrient details,” your output should be limited to only the requested JSON objects (e.g., `recipe_ingredients`, `recipe_nutrients`).
204
- - Include `"header": "Here is the information you requested:"` at the start of each response.
205
-
206
- 2. **Multiple Information Points**:
207
- - If a user query asks for more than one piece of information, return each requested JSON object from the recipe context in a combined JSON response.
208
- - For example, if the query is “Give me the ingredients and instructions,” the output should include both `recipe_ingredients` and `recipe_instructions` objects.
209
- - Include `"header": "Here is the information you requested:"` at the start of each response.
210
-
211
- 3. **Non-Specific Recipe Information**:
212
- - If the query does not directly refer to recipe data but instead asks for a general response based on the context, return a JSON object with a single key `"content"` and a descriptive response as its value.
213
- - Include `"header": "Here is a suggestion based on the recipe:"` as the response starter.
214
- - For example, if the query is “How can I use this recipe for a healthy lunch?” return a response like:
215
- ```json
216
- {
217
- "header": "Here is a suggestion based on the recipe:",
218
- "content": "This Asian Potato Salad with Seven Minute Egg is a nutritious and light option, ideal for a balanced lunch. It provides protein and essential nutrients with low calories."
219
- }
220
- ```
221
-
222
- **Example Context**:
223
- ```json
224
- {
225
- "recipe_name": "Asian Potato Salad with Seven Minute Egg",
226
- "recipe_time": 0,
227
- "recipe_yields": "4 servings",
228
- "recipe_ingredients": [
229
- "2 1/2 cup Multi-Colored Fingerling Potato",
230
- "3/4 cup Celery",
231
- "1/4 cup Red Onion",
232
- "2 tablespoon Fresh Parsley",
233
- "1/3 cup Mayonnaise",
234
- "1 tablespoon Chili Garlic Sauce",
235
- "1 teaspoon Hoisin Sauce",
236
- "1 splash Soy Sauce",
237
- "to taste Salt",
238
- "to taste Ground Black Pepper",
239
- "4 Egg"
240
- ],
241
- "recipe_instructions": "Fill a large stock pot with water. Add the Multi-Colored Fingerling Potato...",
242
- "recipe_image": "https://www.sidechef.com/recipe/eeeeeceb-493e-493d-8273-66c800821b13.jpg?d=1408x1120",
243
- "blogger": "sidechef.com",
244
- "recipe_nutrients": {
245
- "calories": "80 calories",
246
- "proteinContent": "2.1 g",
247
- "fatContent": "6.2 g",
248
- "carbohydrateContent": "3.9 g",
249
- "fiberContent": "0.5 g",
250
- "sugarContent": "0.4 g",
251
- "sodiumContent": "108.0 mg",
252
- "saturatedFatContent": "1.2 g",
253
- "transFatContent": "0.0 g",
254
- "cholesterolContent": "47.4 mg",
255
- "unsaturatedFatContent": "3.8 g"
256
- },
257
- "tags": [
258
- "Salad",
259
- "Lunch",
260
- "Brunch",
261
- "Appetizers",
262
- "Side Dish",
263
- "Budget-Friendly",
264
- "Vegetarian",
265
- "Pescatarian",
266
- "Eggs",
267
- "Potatoes",
268
- "Easy",
269
- "Dairy-Free",
270
- "Shellfish-Free",
271
- "Entertaining",
272
- "Fish-Free",
273
- "Peanut-Free",
274
- "Tree Nut-Free",
275
- "Sugar-Free",
276
- "Global",
277
- "Tomato-Free",
278
- "Stove",
279
- ""
280
- ],
281
- "id_": "0000001"
282
- }
283
-
284
- **Example Query & Output**:
285
-
286
- **Query**: "What are the ingredients and calories?"
287
- **Output**:
288
- ```json
289
- {
290
- "header": "Here is the information you requested:",
291
- "recipe_ingredients": [
292
- "2 1/2 cup Multi-Colored Fingerling Potato",
293
- "3/4 cup Celery",
294
- "1/4 cup Red Onion",
295
- "2 tablespoon Fresh Parsley",
296
- "1/3 cup Mayonnaise",
297
- "1 tablespoon Chili Garlic Sauce",
298
- "1 teaspoon Hoisin Sauce",
299
- "1 splash Soy Sauce",
300
- "to taste Salt",
301
- "to taste Ground Black Pepper",
302
- "4 Egg"
303
- ],
304
- "recipe_nutrients": {
305
- "calories": "80 calories"
306
- }
307
- }
308
-
309
- Try to format the output as JSON object with key value pairs.
310
- """
311
-
312
- formatted_input = f"""
313
- User Query: {user_query}
314
-
315
- Recipe data as Context:
316
- {context}
317
- """
318
- response = router.invoke(
319
- [SystemMessage(content=system_prompt)]
320
- + [
321
- HumanMessage(
322
- content=formatted_input
323
- )
324
- ]
325
- )
326
- res = json.loads(response.content)
327
- return res
328
 
329
 
330
  def answer_generator(formated_input, session_id):
331
  # QA system prompt and chain
332
  qa_system_prompt = """
333
- You are an AI assistant developed by Nutrigenics AI, specializing in intelligent recipe information retrieval and recipe suggestions. Your purpose is to help users by recommending recipes, providing detailed nutritional values, listing ingredients, offering step-by-step cooking instructions, and filtering recipes based on context and user queries.
334
- Operational Guidelines: \n
335
- 1. Input Structure: \n
336
- - Context: You may receive contextual information related to recipes, such as specific recipe name, ingredients, nutritional informations, intsructions, recipe tags, or previously selected dishes. \n
337
- - User Query: Users will pose questions or requests related to recipes, nutritional information, ingredient, cooking instructions, and more. \n
338
- 2. Response Strategy: \n
339
- - Utilize Provided Context: If the context contains relevant information that addresses the user's query, base your response on this provided data to ensure accuracy and relevance. \n
340
- - Respond to User Query Directly: If the context does not contain the necessary information to answer the user's query, kindly state that you do not have the required information. \n
341
- Output Format: \n
342
- - The output format should be JSON.
343
- - The output should have a key 'header' with response message header such as "Here is your ....",
344
- - Then there should be other key with the actual response information. If the user query asks recipe ingredients then the key should be named "ingredients" with
345
- JSON object as its value. The JSON object should have ingredient and its measurement as key-value pairs. Similarly if user asked for nutritional information then the output should have 'header' key with header text and 'nutrients' key
346
- with a JSON object og nutrient and its content as key-value pairs. Similarly if the user query asks for recipe instructions then JSON output should include 'header key with header text and
347
- 'instructions' key with a list of instructions as its value.
348
-
349
- Following are the output formats for some cases:
350
- 1. if user query asks for all recipe information, then output should be of following format:
351
- {
352
- header: header text,
353
- recipe_name: Recipe Name,
354
- recipe_instructions: List of recipe instructions,
355
- recipe_nutrients: key-value pairs of nutrients name and its content,
356
- recipe_ingredients: key-value pairs of ingredients name and its content,
357
- recipe_tags: List of tags related to recipe,
358
- .
359
- .
360
- .
361
- }
362
-
363
- 2. if user query asks for recipe nutrients information, then output should be of following format:
364
- {
365
- header: header text,
366
- recipe_nutrients: key-value pairs of nutrients name and its content.
367
- }
368
-
369
- 3. if user query asks for recipe instructions information, then output should be of following format:
370
- {
371
- header: header text,
372
- recipe_instructions: List of recipe instructions,
373
- }
374
-
375
- 4. if user query asks for recipe instructions information, then output should be of following format:
376
- {
377
- header: header text,
378
- recipe_instructions: List of recipe instructions,
379
- }
380
-
381
-
382
  Additional Instructions:
383
  - Precision and Personalization: Always aim to provide precise, personalized, and relevant information to users based on both the provided context and their specific queries.
384
- - Clarity and Coherence: Ensure all responses are clear, well-structured, and easy to understand, facilitating a seamless user experience.
385
- - Substitute Suggestions: Consider user preferences and dietary restrictions outlined in the context or user query when suggesting ingredient substitutes.
386
  - Dynamic Adaptation: Adapt your responses dynamically based on whether the context is relevant to the user's current request, ensuring optimal use of available information.
387
- - Don't mention about the context in the response, format the answer in a natural and friendly way.
388
-
389
  Context:
390
  {context}
391
  """
@@ -421,8 +238,8 @@ def router_node(query):
421
  # Prompt
422
  router_instructions = """You are an expert at determining the appropriate task for a user’s question based on chat history and the current query context. You have two available tasks:
423
 
424
- 1. Retrieval: Fetch information based on the user's chat history and current query.
425
- 2. Recommendation/Suggestion: Recommend user recipes based on the query.
426
 
427
  Return a JSON response with a single key named “task” indicating either “retrieval” or “recommendation” based on your decision.
428
  """
@@ -447,14 +264,14 @@ def recommendation_node(query):
447
  "recipe_time": integer,
448
  "recipe_yields": string,
449
  "recipe_ingredients": list of ingredients,
450
- "recipe_instructions": list of instructions,
451
  "recipe_image": string,
452
  "blogger": string,
453
- "recipe_nutrients": JSON object with key-value pairs such as "protein: 10g",
454
- "tags": list of tags related to a recipe
455
  } \n
456
 
457
- Here is the example of a recipe JSON object from the JSON data: \n
458
  {
459
  "recipe_name": "Asian Potato Salad with Seven Minute Egg",
460
  "recipe_time": 0,
@@ -504,20 +321,19 @@ def recommendation_node(query):
504
  ]
505
  } \n
506
 
507
- Based on the user query, provide a Python function to filter the JSON data. The output of the function should be a list of JSON objects. \n
508
 
509
  Recipe filtering instructions:
510
- - If a user asked for the highest nutrient recipe such as "high protein or high calories" then filtered recipes should be the top highest recipes from all the recipes with high nutrients.
511
- - sort or rearrange recipes based on which recipes are more appropriate for the user.
512
- - Suggest dishes based on user preferences, dietary restrictions, available ingredients if specified by user.
513
 
514
  Your output instructions:
515
- - The function name should be filter_recipes. The input to the function should be the file name.
516
  - The length of output recipes should not be more than 6.
517
- - Only give me the output function. Do not call the function.
518
- - Give the Python function as a key named "code" in a JSON format.
519
- - Do not include any other text with the output, only give Python code.
520
- - If you do not follow the above-given instructions, the chat may be terminated.
521
  """
522
  max_tries = 3
523
  while True:
@@ -575,7 +391,59 @@ def answer_formatter_node(question, context):
575
  return res
576
 
577
  CURR_CONTEXT = ''
578
- CURR_SESSION_KEY = generate_session_key()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579
 
580
  import json
581
  import base64
@@ -586,12 +454,12 @@ import torchvision.transforms as transforms
586
  # Dictionary to store incomplete image data by session
587
  session_store = {}
588
 
 
589
  def handle_message(data):
590
  global session_store
591
  global CURR_CONTEXT
592
- global CURR_SESSION_KEY
593
- session_id = CURR_SESSION_KEY
594
  context = "No data available"
 
595
  if session_id not in session_store:
596
  session_store[session_id] = {'image_data': b"", 'message': None, 'image_received': False}
597
 
@@ -606,7 +474,8 @@ def handle_message(data):
606
 
607
  except Exception as e:
608
  print(f"Error processing image chunk: {str(e)}")
609
- return "An error occurred while receiving the image chunk."
 
610
 
611
  if session_store[session_id]['image_data'] or session_store[session_id]['message']:
612
  try:
@@ -628,11 +497,12 @@ def handle_message(data):
628
  }
629
  # Invoke question_answer_chain and stream the response
630
  response = answer_generator(formated_input, session_id=session_id)
631
- return response
632
 
633
  except Exception as e:
634
  print(f"Error processing image or message: {str(e)}")
635
- return "An error occurred while processing your request."
 
636
  finally:
637
  # Clear session data after processing
638
  session_store.pop(session_id, None)
@@ -646,15 +516,18 @@ def handle_message(data):
646
  'context': json.dumps(CURR_CONTEXT)
647
  }
648
  response = answer_generator(formated_input, session_id=session_id)
649
- session_store.pop(session_id, None)
650
- return response
651
  else:
652
  response = recommendation_node(message)
 
653
  # response = answer_formatter_node(message, recipes)
654
  if response is None:
655
  response = {'content':"An error occurred while processing your request."}
656
- session_store.pop(session_id, None)
657
- return response
 
 
 
658
 
659
  import requests
660
  from PIL import Image
@@ -662,6 +535,7 @@ import numpy as np
662
  from io import BytesIO
663
 
664
  def download_image_to_numpy(url):
 
665
  # Send a GET request to the URL to download the image
666
  response = requests.get(url)
667
 
@@ -677,96 +551,21 @@ def download_image_to_numpy(url):
677
  else:
678
  raise Exception(f"Failed to download image. Status code: {response.status_code}")
679
 
 
680
  def handle_message(data):
681
- global CURR_SESSION_KEY
682
- session_id = CURR_SESSION_KEY
683
  img_url = data['img_url']
684
  message = data['message']
 
685
  image_array = download_image_to_numpy(img_url)
686
- response = get_answer(image=image_array, message=message, sessionID=session_id)
 
687
  return response
688
 
689
-
690
- # @spaces.GPU
691
- def respond_to_user(image, message):
692
- # Process the image and message here
693
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
694
- chat = Chat(model,transform,df,tar_img_feats, device)
695
- chat.encode_image(image)
696
- data = chat.ask()
697
- formated_input = {
698
- 'input': message,
699
- 'context': data
700
- }
701
- try:
702
- response = answer_generator(formated_input, session_id="123cnedc")
703
- except Exception as e:
704
- response = {'content':"An error occurred while processing your request."}
705
- return response
706
-
707
- from PIL import Image
708
- import numpy as np
709
-
710
- @app.route("/get-answer", methods=["POST"])
711
- def get_answer():
712
- global CURR_CONTEXT
713
- global CURR_SESSION_KEY
714
- sessionID = CURR_SESSION_KEY
715
-
716
- image = request.files.get('image', "")
717
- message = request.form.get('message', "")
718
-
719
- if image:
720
- # Open the image using PIL
721
- img = Image.open(image.stream) # Use image.stream for file-like object
722
- img = img.convert('RGB') # Convert to RGB if needed
723
-
724
- # Convert the PIL image to a NumPy array
725
- image = np.array(img)
726
-
727
- if image is not None:
728
- try:
729
- # Process the image and message here
730
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
731
- chat = Chat(model,transform,df,tar_img_feats, device)
732
- chat.encode_image(image)
733
- data = chat.ask()
734
- CURR_CONTEXT = data
735
- formated_input = {
736
- 'input': message,
737
- 'context': data
738
- }
739
- # response = answer_generator(formated_input, session_id=sessionID)
740
- response = json_answer_generator(message, data)
741
- except Exception as e:
742
- print(e)
743
- response = {'content':"An error occurred while processing your request." + str(e)}
744
- elif (image is None) and (message is not None):
745
- task = router_node(message)
746
- if task == 'recommendation':
747
- recipes = recommendation_node(message)
748
- if not recipes:
749
- response = {'content': "An error occurred while processing your request." + str(e)}
750
- else:
751
- # response = answer_formatter_node(message, recipes)
752
- response = recipes
753
- else:
754
- formated_input = {
755
- 'input': message,
756
- 'context': CURR_CONTEXT
757
- }
758
- # response = answer_generator(formated_input, session_id=sessionID)
759
- response = json_answer_generator(message, CURR_CONTEXT)
760
- return jsonify(response)
761
-
762
-
763
  # Home route
764
  @app.route("/")
765
  def index_view():
766
  return render_template('chat.html')
767
 
768
-
769
-
770
  # Main function to run the app
771
  if __name__ == '__main__':
772
- app.run(host='0.0.0.0')
 
27
  from langchain_groq import ChatGroq
28
 
29
  from dotenv import load_dotenv
30
+ from flask import Flask, request, render_template
31
  from flask_cors import CORS
32
+ from flask_socketio import SocketIO, emit
33
 
34
  import json
35
  from openai import OpenAI
 
51
  app = Flask(__name__)
52
  CORS(app)
53
  app.config['MAX_CONTENT_LENGTH'] = 1024 * 1024 * 1024
54
+ socketio = SocketIO(app, cors_allowed_origins="*", logger=True, max_http_buffer_size=1024 * 1024 * 1024)
55
  app.config['SECRET_KEY'] = SECRET_KEY
56
 
57
+
58
  # Initialize LLM
59
  llm = ChatGroq(model="llama-3.1-8b-instant", temperature=0, max_tokens=1024, max_retries=2)
60
 
 
 
 
61
  # Initialize Router
62
  router = ChatGroq(model="llama-3.2-3b-preview", temperature=0, max_tokens=1024, max_retries=2, model_kwargs={"response_format": {"type": "json_object"}})
63
 
 
77
  for stop in self.stops:
78
  if torch.all(input_ids[:, -len(stop):] == stop).item():
79
  return True
80
+
81
  return False
82
 
83
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
128
 
129
  model = model.to(device)
130
  model.eval()
 
 
131
 
132
  transform = transform_test(384)
133
 
 
134
  df = pd.read_json("my_recipes.json")
135
 
 
136
  tar_img_feats = []
137
  for _id in df["id_"].tolist():
138
  tar_img_feats.append(torch.load("./datasets/sidechef/blip-embs-large/{:07d}.pth".format(_id)).unsqueeze(0))
 
141
 
142
  class Chat:
143
 
144
+ def __init__(self, model, transform, dataframe, tar_img_feats, device='cuda:0', stopping_criteria=None):
145
  self.device = device
146
  self.model = model
147
  self.transform = transform
 
179
 
180
 
181
  chat = Chat(model,transform,df,tar_img_feats, device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
 
184
  def answer_generator(formated_input, session_id):
185
  # QA system prompt and chain
186
  qa_system_prompt = """
187
+ You are an AI assistant developed by Nutrigenics AI, specializing in intelligent recipe information retrieval and recipe suggestions. Your purpose is to help users by recommending recipes, providing detailed nutritional values, listing ingredients, offering step-by-step cooking instructions, and filtering recipes based on provide context ans user query.
188
+ Operational Guidelines:
189
+ 1. Input Structure:
190
+ - Context: You may receive contextual information related to recipes, such as specific data sets, user preferences, dietary restrictions, or previously selected dishes.
191
+ - User Query: Users will pose questions or requests related to recipes, nutritional information, ingredient substitutions, cooking instructions, and more.
192
+ 2. Response Strategy:
193
+ - Utilize Provided Context: If the context contains relevant information that addresses the user's query, base your response on this provided data to ensure accuracy and relevance.
194
+ - Respond to User Query Directly: If the context does not contain the necessary information to answer the user's query, kindly state that you do not have require information.
195
+ Core Functionalities:
196
+ - Nutritional Information: Accurately provide nutritional values for each recipe, including calories, macronutrients (proteins, fats, carbohydrates), and essential vitamins and minerals, using contextual data when available.
197
+ - Ingredient Details: List all ingredients required for recipes, including substitute options for dietary restrictions or ingredient availability, utilizing context when relevant.
198
+ - Step-by-Step Cooking Instructions: Deliver clear, easy-to-follow instructions for preparing and cooking meals, informed by any provided contextual data.
199
+ - Recipe Recommendations: Suggest dishes based on user preferences, dietary restrictions, available ingredients, and contextual data if provided.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
  Additional Instructions:
201
  - Precision and Personalization: Always aim to provide precise, personalized, and relevant information to users based on both the provided context and their specific queries.
202
+ - Clarity and Coherence: Ensure that all responses are clear, well-structured, and easy to understand, facilitating a seamless user experience.
203
+ - Substitute Suggestions: When suggesting ingredient substitutes, consider user preferences and dietary restrictions outlined in the context or user query.
204
  - Dynamic Adaptation: Adapt your responses dynamically based on whether the context is relevant to the user's current request, ensuring optimal use of available information.
205
+ Don't mention about context in the response, format the answer in a natural and friendly way.
 
206
  Context:
207
  {context}
208
  """
 
238
  # Prompt
239
  router_instructions = """You are an expert at determining the appropriate task for a user’s question based on chat history and the current query context. You have two available tasks:
240
 
241
+ 1. Retrieval: Fetch information based on user's chat history and current query.
242
+ 2. Recommendation/Suggestion: Recommend recipes to users based on the query.
243
 
244
  Return a JSON response with a single key named “task” indicating either “retrieval” or “recommendation” based on your decision.
245
  """
 
264
  "recipe_time": integer,
265
  "recipe_yields": string,
266
  "recipe_ingredients": list of ingredients,
267
+ "recipe_instructions": list of instruections,
268
  "recipe_image": string,
269
  "blogger": string,
270
+ "recipe_nutrients": JSON object with key value pairs such as "protein: 10g",
271
+ "tags": list of tags related to recipe
272
  } \n
273
 
274
+ Here is the example of an recipe json object from the JSON data: \n
275
  {
276
  "recipe_name": "Asian Potato Salad with Seven Minute Egg",
277
  "recipe_time": 0,
 
321
  ]
322
  } \n
323
 
324
+ Based on the user query, provide a Python function to filter the JSON data. The output of the function should be a list of json objects. \n
325
 
326
  Recipe filtering instructions:
327
+ - If a user asked for the highest nutrient recipe such as "high protein or high calories" then filtered recipes should be the top highest recipes from all the recipes with high nutrient.
328
+ - sort or rearrange recipes based which recipes are more appropriate for the user.
 
329
 
330
  Your output instructions:
331
+ - The function name should be filter_recipes. The input to the function should be file name.
332
  - The length of output recipes should not be more than 6.
333
+ - Only give me output function. Do not call the function.
334
+ - Give the python function as a key named "code" in a json format.
335
+ - Do not include any other text with the output, only give python code.
336
+ - If you do not follow the above given instructions, the chat may be terminated.
337
  """
338
  max_tries = 3
339
  while True:
 
391
  return res
392
 
393
  CURR_CONTEXT = ''
394
+
395
+ # @spaces.GPU
396
+ def get_answer(image=[], message='', sessionID='abc123'):
397
+ global CURR_CONTEXT
398
+ if len(image) > 0:
399
+ try:
400
+ # Process the image and message here
401
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
402
+ chat = Chat(model,transform,df,tar_img_feats, device)
403
+ chat.encode_image(image)
404
+ data = chat.ask()
405
+ CURR_CONTEXT = data
406
+ formated_input = {
407
+ 'input': message,
408
+ 'context': data
409
+ }
410
+ response = answer_generator(formated_input, session_id=sessionID)
411
+ except Exception as e:
412
+ print(e)
413
+ response = {'content':"An error occurred while processing your request."}
414
+ elif len(image) == 0 and message is not None:
415
+ print("I am here")
416
+ task = router_node(message)
417
+ if task == 'retrieval':
418
+ recipes = recommendation_node(message)
419
+ print(recipes)
420
+ if not recipes:
421
+ response = {'content':"An error occurred while processing your request."}
422
+ response = answer_formatter_node(message, recipes)
423
+ else:
424
+ formated_input = {
425
+ 'input': message,
426
+ 'context': CURR_CONTEXT
427
+ }
428
+ response = answer_generator(formated_input, session_id=sessionID)
429
+
430
+ return response
431
+
432
+ # Function to handle WebSocket connection
433
+ @socketio.on('ping')
434
+ def handle_connect():
435
+ emit('Ping-return', {'message': 'Connected'}, room=request.sid)
436
+
437
+
438
+ # Function to handle WebSocket connection
439
+ @socketio.on('connect')
440
+ def handle_connect():
441
+ print(f"Client connected: {request.sid}")
442
+
443
+ # Function to handle WebSocket disconnection
444
+ @socketio.on('disconnect')
445
+ def handle_disconnect():
446
+ print(f"Client disconnected: {request.sid}")
447
 
448
  import json
449
  import base64
 
454
  # Dictionary to store incomplete image data by session
455
  session_store = {}
456
 
457
+ @socketio.on('message')
458
  def handle_message(data):
459
  global session_store
460
  global CURR_CONTEXT
 
 
461
  context = "No data available"
462
+ session_id = request.sid
463
  if session_id not in session_store:
464
  session_store[session_id] = {'image_data': b"", 'message': None, 'image_received': False}
465
 
 
474
 
475
  except Exception as e:
476
  print(f"Error processing image chunk: {str(e)}")
477
+ emit('response', "An error occurred while receiving the image chunk.", room=session_id)
478
+ return
479
 
480
  if session_store[session_id]['image_data'] or session_store[session_id]['message']:
481
  try:
 
497
  }
498
  # Invoke question_answer_chain and stream the response
499
  response = answer_generator(formated_input, session_id=session_id)
500
+ emit('response', response, room=session_id)
501
 
502
  except Exception as e:
503
  print(f"Error processing image or message: {str(e)}")
504
+ emit('response', "An error occurred while processing your request.", room=session_id)
505
+ return
506
  finally:
507
  # Clear session data after processing
508
  session_store.pop(session_id, None)
 
516
  'context': json.dumps(CURR_CONTEXT)
517
  }
518
  response = answer_generator(formated_input, session_id=session_id)
519
+ emit('response', response, room=session_id)
 
520
  else:
521
  response = recommendation_node(message)
522
+ print(response)
523
  # response = answer_formatter_node(message, recipes)
524
  if response is None:
525
  response = {'content':"An error occurred while processing your request."}
526
+
527
+ emit('json_response', response, room=session_id)
528
+ session_store.pop(session_id, None)
529
+
530
+
531
 
532
  import requests
533
  from PIL import Image
 
535
  from io import BytesIO
536
 
537
  def download_image_to_numpy(url):
538
+ print("Image URL: ", url)
539
  # Send a GET request to the URL to download the image
540
  response = requests.get(url)
541
 
 
551
  else:
552
  raise Exception(f"Failed to download image. Status code: {response.status_code}")
553
 
554
+ @socketio.on('example')
555
  def handle_message(data):
 
 
556
  img_url = data['img_url']
557
  message = data['message']
558
+ session_id = request.sid
559
  image_array = download_image_to_numpy(img_url)
560
+ response = get_answer(image=image_array, message=message, sessionID=request.sid)
561
+ emit('response', response, room=session_id)
562
  return response
563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564
  # Home route
565
  @app.route("/")
566
  def index_view():
567
  return render_template('chat.html')
568
 
 
 
569
  # Main function to run the app
570
  if __name__ == '__main__':
571
+ socketio.run(app, debug=False)