marker-io / marker /settings.py
Ritvik19's picture
Add all files and directories
c8a32e7
from typing import Optional, List, Dict, Literal
from dotenv import find_dotenv
from pydantic import computed_field
from pydantic_settings import BaseSettings
import torch
class Settings(BaseSettings):
# General
TORCH_DEVICE: Optional[str] = None # Note: MPS device does not work for text detection, and will default to CPU
IMAGE_DPI: int = 96 # DPI to render images pulled from pdf at
EXTRACT_IMAGES: bool = True # Extract images from pdfs and save them
@computed_field
@property
def TORCH_DEVICE_MODEL(self) -> str:
if self.TORCH_DEVICE is not None:
return self.TORCH_DEVICE
if torch.cuda.is_available():
return "cuda"
if torch.backends.mps.is_available():
return "mps"
return "cpu"
INFERENCE_RAM: int = 40 # How much VRAM each GPU has (in GB).
VRAM_PER_TASK: float = 4.5 # How much VRAM to allocate per task (in GB). Peak marker VRAM usage is around 5GB, but avg across workers is lower.
DEFAULT_LANG: str = "English" # Default language we assume files to be in, should be one of the keys in TESSERACT_LANGUAGES
SUPPORTED_FILETYPES: Dict = {
"application/pdf": "pdf",
}
# Text line Detection
DETECTOR_BATCH_SIZE: Optional[int] = None # Defaults to 6 for CPU, 12 otherwise
SURYA_DETECTOR_DPI: int = 96
DETECTOR_POSTPROCESSING_CPU_WORKERS: int = 4
# OCR
INVALID_CHARS: List[str] = [chr(0xfffd), "�"]
OCR_ENGINE: Optional[Literal["surya", "ocrmypdf"]] = "surya" # Which OCR engine to use, either "surya" or "ocrmypdf". Defaults to "ocrmypdf" on CPU, "surya" on GPU.
OCR_ALL_PAGES: bool = False # Run OCR on every page even if text can be extracted
## Surya
SURYA_OCR_DPI: int = 96
RECOGNITION_BATCH_SIZE: Optional[int] = None # Batch size for surya OCR defaults to 64 for cuda, 32 otherwise
## Tesseract
OCR_PARALLEL_WORKERS: int = 2 # How many CPU workers to use for OCR
TESSERACT_TIMEOUT: int = 20 # When to give up on OCR
TESSDATA_PREFIX: str = ""
# Texify model
TEXIFY_MODEL_MAX: int = 384 # Max inference length for texify
TEXIFY_TOKEN_BUFFER: int = 256 # Number of tokens to buffer above max for texify
TEXIFY_DPI: int = 96 # DPI to render images at
TEXIFY_BATCH_SIZE: Optional[int] = None # Defaults to 6 for cuda, 12 otherwise
TEXIFY_MODEL_NAME: str = "vikp/texify"
# Layout model
SURYA_LAYOUT_DPI: int = 96
BAD_SPAN_TYPES: List[str] = ["Caption", "Footnote", "Page-footer", "Page-header", "Picture"]
LAYOUT_MODEL_CHECKPOINT: str = "vikp/surya_layout2"
BBOX_INTERSECTION_THRESH: float = 0.7 # How much the layout and pdf bboxes need to overlap to be the same
LAYOUT_BATCH_SIZE: Optional[int] = None # Defaults to 12 for cuda, 6 otherwise
# Ordering model
SURYA_ORDER_DPI: int = 96
ORDER_BATCH_SIZE: Optional[int] = None # Defaults to 12 for cuda, 6 otherwise
ORDER_MAX_BBOXES: int = 255
# Final editing model
EDITOR_BATCH_SIZE: Optional[int] = None # Defaults to 6 for cuda, 12 otherwise
EDITOR_MAX_LENGTH: int = 1024
EDITOR_MODEL_NAME: str = "vikp/pdf_postprocessor_t5"
ENABLE_EDITOR_MODEL: bool = False # The editor model can create false positives
EDITOR_CUTOFF_THRESH: float = 0.9 # Ignore predictions below this probability
# Ray
RAY_CACHE_PATH: Optional[str] = None # Where to save ray cache
RAY_CORES_PER_WORKER: int = 1 # How many cpu cores to allocate per worker
# Debug
DEBUG: bool = False # Enable debug logging
DEBUG_DATA_FOLDER: Optional[str] = None
DEBUG_LEVEL: int = 0 # 0 to 2, 2 means log everything
@computed_field
@property
def CUDA(self) -> bool:
return "cuda" in self.TORCH_DEVICE_MODEL
@computed_field
@property
def MODEL_DTYPE(self) -> torch.dtype:
if self.TORCH_DEVICE_MODEL == "cuda":
return torch.bfloat16
else:
return torch.float32
@computed_field
@property
def TEXIFY_DTYPE(self) -> torch.dtype:
return torch.float32 if self.TORCH_DEVICE_MODEL == "cpu" else torch.float16
class Config:
env_file = find_dotenv("local.env")
extra = "ignore"
settings = Settings()