File size: 6,338 Bytes
0690a50
 
 
 
 
 
3b609b9
0690a50
 
 
 
 
2636d9e
 
 
0690a50
 
 
 
2636d9e
 
 
 
 
0690a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4760077
0690a50
 
 
 
 
 
 
 
 
2636d9e
0690a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636d9e
 
 
 
0690a50
 
 
 
 
2636d9e
 
4760077
2636d9e
 
0690a50
 
2636d9e
0690a50
 
 
 
 
 
 
2636d9e
0690a50
 
 
2636d9e
 
0690a50
2636d9e
 
0690a50
2636d9e
 
 
 
0690a50
2636d9e
0690a50
 
 
 
2636d9e
0690a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636d9e
0690a50
2636d9e
 
 
 
 
 
 
0690a50
2636d9e
0690a50
2636d9e
0690a50
2636d9e
 
0690a50
2636d9e
 
0690a50
 
2636d9e
0690a50
2636d9e
 
0690a50
2636d9e
 
0690a50
 
2636d9e
0690a50
2636d9e
0690a50
2636d9e
0690a50
 
 
 
 
2636d9e
0690a50
2636d9e
 
 
 
 
0690a50
2636d9e
 
 
 
0690a50
 
 
2636d9e
 
0690a50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
'''
python scripts/gradio_demo.py 
'''

import sys
import os
workspace_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "icedit"))

if workspace_dir not in sys.path:
    sys.path.insert(0, workspace_dir)
    
from diffusers import FluxFillPipeline
import gradio as gr
import numpy as np
import torch
import argparse
import random 
from diffusers import FluxFillPipeline
from PIL import Image

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


parser = argparse.ArgumentParser() 
parser.add_argument("--port", type=int, default=7860, help="Port for the Gradio app")
parser.add_argument("--output-dir", type=str, default="gradio_results", help="Directory to save the output image")
parser.add_argument("--flux-path", type=str, default='black-forest-labs/flux.1-fill-dev', help="Path to the model")
parser.add_argument("--lora-path", type=str, default='sanaka87/ICEdit-MoE-LoRA', help="Path to the LoRA weights")
parser.add_argument("--enable-model-cpu-offload", action="store_true", help="Enable CPU offloading for the model")
args = parser.parse_args()

pipe = FluxFillPipeline.from_pretrained(args.flux_path, torch_dtype=torch.bfloat16)
pipe.load_lora_weights(args.lora_path)

if args.enable_model_cpu_offload:
    pipe.enable_model_cpu_offload() 
else:
    pipe = pipe.to("cuda")

# @spaces.GPU
def infer(edit_images, 
          prompt, 
          seed=666, 
          randomize_seed=False, 
          width=1024, 
          height=1024, 
          guidance_scale=50, 
          num_inference_steps=28, 
          progress=gr.Progress(track_tqdm=True)
):
    
    image = edit_images["background"]
        
    if image.size[0] != 512:
        print("\033[93m[WARNING] We can only deal with the case where the image's width is 512.\033[0m")
        new_width = 512
        scale = new_width / image.size[0]
        new_height = int(image.size[1] * scale)
        new_height = (new_height // 8) * 8  
        image = image.resize((new_width, new_height))
        print(f"\033[93m[WARNING] Resizing the image to {new_width} x {new_height}\033[0m")
        
    image = image.convert("RGB")
    width, height = image.size
    image = image.resize((512, int(512 * height / width)))
    combined_image = Image.new("RGB", (width * 2, height))
    combined_image.paste(image, (0, 0)) 
    mask_array = np.zeros((height, width * 2), dtype=np.uint8)
    mask_array[:, width:] = 255 
    mask = Image.fromarray(mask_array)
    instruction = f'A diptych with two side-by-side images of the same scene. On the right, the scene is exactly the same as on the left but {prompt}'

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    image = pipe(
        prompt=instruction,
        image=combined_image,
        mask_image=mask,
        height=height,
        width=width*2,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator().manual_seed(seed),
    ).images[0]

    w,h = image.size
    image = image.crop((w//2, 0, w, h))

    os.makedirs(args.output_dir, exist_ok=True)
        
    index = len(os.listdir(args.output_dir))
    image.save(f"{args.output_dir}/result_{index}.png")
    
    return image, seed
    
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 1000px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# IC-Edit
A demo for [IC-Edit](https://arxiv.org/pdf/2504.20690).
More **open-source**, with **lower costs**, **faster speed** (it takes about 9 seconds to process one image), and **powerful performance**.
""")
        with gr.Row():
            with gr.Column():
                edit_image = gr.ImageEditor(
                    label='Upload and draw mask for inpainting',
                    type='pil',
                    sources=["upload", "webcam"],
                    image_mode='RGB',
                    layers=False,
                    brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
                    height=600
                )
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run")
                
            result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                    visible=False
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                    visible=False
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=50,
                    step=0.5,
                    value=50,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch(server_port=args.port)