Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,987 Bytes
0690a50 3b609b9 0690a50 2636d9e 0690a50 6f47456 0690a50 2636d9e 0690a50 6f47456 0690a50 2636d9e 0690a50 d1e368f 0690a50 2636d9e 0690a50 2636d9e 4760077 2636d9e 0690a50 2636d9e 0690a50 cfb99d4 2636d9e cfb99d4 2636d9e 0690a50 2636d9e cfb99d4 2636d9e 0690a50 9333b5a 0690a50 ea1a856 0690a50 2636d9e 0690a50 d1e368f 0690a50 dce6db3 215f06f cfb99d4 2636d9e cfb99d4 2636d9e cfb99d4 2636d9e cfb99d4 2636d9e 0690a50 2636d9e 0690a50 2636d9e cfb99d4 2636d9e 0690a50 2636d9e 0690a50 2636d9e cfb99d4 2636d9e 0690a50 2636d9e 0690a50 4fb8bb3 0690a50 2636d9e cfb99d4 2636d9e 0690a50 2636d9e cfb99d4 2636d9e cfb99d4 2636d9e 0690a50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
'''
python scripts/gradio_demo.py
'''
import sys
import os
workspace_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "icedit"))
if workspace_dir not in sys.path:
sys.path.insert(0, workspace_dir)
from diffusers import FluxFillPipeline
import gradio as gr
import numpy as np
import torch
import argparse
import random
import spaces
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7860, help="Port for the Gradio app")
parser.add_argument("--output-dir", type=str, default="gradio_results", help="Directory to save the output image")
parser.add_argument("--flux-path", type=str, default='black-forest-labs/flux.1-fill-dev', help="Path to the model")
parser.add_argument("--lora-path", type=str, default='sanaka87/ICEdit-MoE-LoRA', help="Path to the LoRA weights")
parser.add_argument("--enable-model-cpu-offload", action="store_true", help="Enable CPU offloading for the model")
args = parser.parse_args()
pipe = FluxFillPipeline.from_pretrained(args.flux_path, torch_dtype=torch.bfloat16)
pipe.load_lora_weights(args.lora_path)
if args.enable_model_cpu_offload:
pipe.enable_model_cpu_offload()
else:
pipe = pipe.to("cuda")
@spaces.GPU
def infer(edit_images,
prompt,
seed=666,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=50,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True)
):
image = edit_images
if image.size[0] != 512:
print("\033[93m[WARNING] We can only deal with the case where the image's width is 512.\033[0m")
new_width = 512
scale = new_width / image.size[0]
new_height = int(image.size[1] * scale)
new_height = (new_height // 8) * 8
image = image.resize((new_width, new_height))
print(f"\033[93m[WARNING] Resizing the image to {new_width} x {new_height}\033[0m")
image = image.convert("RGB")
width, height = image.size
image = image.resize((512, int(512 * height / width)))
combined_image = Image.new("RGB", (width * 2, height))
combined_image.paste(image, (0, 0))
mask_array = np.zeros((height, width * 2), dtype=np.uint8)
mask_array[:, width:] = 255
mask = Image.fromarray(mask_array)
instruction = f'A diptych with two side-by-side images of the same scene. On the right, the scene is exactly the same as on the left but {prompt}'
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = pipe(
prompt=instruction,
image=combined_image,
mask_image=mask,
height=height,
width=width*2,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
w,h = image.size
image = image.crop((w//2, 0, w, h))
os.makedirs(args.output_dir, exist_ok=True)
index = len(os.listdir(args.output_dir))
image.save(f"{args.output_dir}/result_{index}.png")
return image, seed
# 新增的示例,将元组转换为列表
new_examples = [
['assets/girl.png', 'Make her hair dark green and her clothes checked.', 42],
['assets/boy.png', 'Change the sunglasses to a Christmas hat.', 27440001],
['assets/kaori.jpg', 'Make it a sketch.', 329918865]
]
css = """
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# IC-Edit
**Image Editing is worth a single LoRA!** A demo for [IC-Edit](https://arxiv.org/pdf/2504.20690).
More **open-source**, with **lower costs**, **faster speed** (it takes about 9 seconds to process one image), and **powerful performance**.
For more details, check out our [Github Repository](https://github.com/River-Zhang/ICEdit) and [website](https://river-zhang.github.io/ICEdit-gh-pages/). If our project resonates with you or proves useful, we'd be truly grateful if you could spare a moment to give it a star.
""")
with gr.Row():
with gr.Column():
edit_image = gr.Image(
label='Upload image for editing',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Result", show_label=False)
gr.Markdown("⚠️ If your edit didn't work as desired, **try again with another seed** ! <br> If you use our example, don't forget to uncheck the random seed option. Otherwise, it will still use a random seed.")
with gr.Accordion("Advanced Settings", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=100,
step=0.5,
value=50,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
# 添加 Gradio 示例组件
gr.Examples(
examples=new_examples,
inputs=[edit_image, prompt, seed],
outputs=[result, seed],
fn=infer,
cache_examples=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch(server_port=args.port) |