File size: 6,987 Bytes
0690a50
 
 
 
 
 
3b609b9
0690a50
 
 
 
 
2636d9e
 
 
0690a50
 
6f47456
0690a50
2636d9e
 
 
 
 
0690a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f47456
0690a50
 
 
 
 
 
 
 
 
2636d9e
0690a50
d1e368f
0690a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636d9e
 
 
 
0690a50
 
 
 
 
2636d9e
 
4760077
2636d9e
 
0690a50
 
2636d9e
0690a50
 
 
 
 
 
 
cfb99d4
 
 
 
 
2636d9e
 
cfb99d4
2636d9e
 
0690a50
2636d9e
 
 
 
cfb99d4
2636d9e
0690a50
9333b5a
0690a50
ea1a856
0690a50
2636d9e
0690a50
d1e368f
 
0690a50
 
 
 
 
 
 
 
 
 
 
 
 
dce6db3
 
215f06f
cfb99d4
 
2636d9e
 
 
 
 
 
 
cfb99d4
2636d9e
cfb99d4
2636d9e
cfb99d4
2636d9e
 
0690a50
2636d9e
 
0690a50
 
2636d9e
cfb99d4
2636d9e
 
0690a50
2636d9e
 
0690a50
 
2636d9e
cfb99d4
2636d9e
0690a50
2636d9e
0690a50
 
4fb8bb3
0690a50
 
2636d9e
cfb99d4
2636d9e
 
 
 
 
0690a50
2636d9e
 
cfb99d4
 
 
 
 
 
 
 
 
2636d9e
 
cfb99d4
 
 
2636d9e
 
0690a50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
'''
python scripts/gradio_demo.py 
'''

import sys
import os
workspace_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "icedit"))

if workspace_dir not in sys.path:
    sys.path.insert(0, workspace_dir)
    
from diffusers import FluxFillPipeline
import gradio as gr
import numpy as np
import torch
import argparse
import random 
import spaces
from PIL import Image

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


parser = argparse.ArgumentParser() 
parser.add_argument("--port", type=int, default=7860, help="Port for the Gradio app")
parser.add_argument("--output-dir", type=str, default="gradio_results", help="Directory to save the output image")
parser.add_argument("--flux-path", type=str, default='black-forest-labs/flux.1-fill-dev', help="Path to the model")
parser.add_argument("--lora-path", type=str, default='sanaka87/ICEdit-MoE-LoRA', help="Path to the LoRA weights")
parser.add_argument("--enable-model-cpu-offload", action="store_true", help="Enable CPU offloading for the model")
args = parser.parse_args()

pipe = FluxFillPipeline.from_pretrained(args.flux_path, torch_dtype=torch.bfloat16)
pipe.load_lora_weights(args.lora_path)

if args.enable_model_cpu_offload:
    pipe.enable_model_cpu_offload() 
else:
    pipe = pipe.to("cuda")

@spaces.GPU
def infer(edit_images, 
          prompt, 
          seed=666, 
          randomize_seed=False, 
          width=1024, 
          height=1024, 
          guidance_scale=50, 
          num_inference_steps=28, 
          progress=gr.Progress(track_tqdm=True)
):
    
    image = edit_images
        
    if image.size[0] != 512:
        print("\033[93m[WARNING] We can only deal with the case where the image's width is 512.\033[0m")
        new_width = 512
        scale = new_width / image.size[0]
        new_height = int(image.size[1] * scale)
        new_height = (new_height // 8) * 8  
        image = image.resize((new_width, new_height))
        print(f"\033[93m[WARNING] Resizing the image to {new_width} x {new_height}\033[0m")
        
    image = image.convert("RGB")
    width, height = image.size
    image = image.resize((512, int(512 * height / width)))
    combined_image = Image.new("RGB", (width * 2, height))
    combined_image.paste(image, (0, 0)) 
    mask_array = np.zeros((height, width * 2), dtype=np.uint8)
    mask_array[:, width:] = 255 
    mask = Image.fromarray(mask_array)
    instruction = f'A diptych with two side-by-side images of the same scene. On the right, the scene is exactly the same as on the left but {prompt}'

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    image = pipe(
        prompt=instruction,
        image=combined_image,
        mask_image=mask,
        height=height,
        width=width*2,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator().manual_seed(seed),
    ).images[0]

    w,h = image.size
    image = image.crop((w//2, 0, w, h))

    os.makedirs(args.output_dir, exist_ok=True)
        
    index = len(os.listdir(args.output_dir))
    image.save(f"{args.output_dir}/result_{index}.png")
    
    return image, seed
    
# 新增的示例,将元组转换为列表
new_examples = [
    ['assets/girl.png', 'Make her hair dark green and her clothes checked.', 42],
    ['assets/boy.png', 'Change the sunglasses to a Christmas hat.', 27440001],
    ['assets/kaori.jpg', 'Make it a sketch.', 329918865]
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 1000px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# IC-Edit
**Image Editing is worth a single LoRA!** A demo for [IC-Edit](https://arxiv.org/pdf/2504.20690).
More **open-source**, with **lower costs**, **faster speed** (it takes about 9 seconds to process one image), and **powerful performance**.
For more details, check out our [Github Repository](https://github.com/River-Zhang/ICEdit) and [website](https://river-zhang.github.io/ICEdit-gh-pages/). If our project resonates with you or proves useful, we'd be truly grateful if you could spare a moment to give it a star.
""")
        with gr.Row():
            with gr.Column():
                edit_image = gr.Image(
                    label='Upload image for editing',
                    type='pil',
                    sources=["upload", "webcam"],
                    image_mode='RGB',
                    height=600
                )
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run")
            with gr.Column():
                result = gr.Image(label="Result", show_label=False)
                gr.Markdown("⚠️ If your edit didn't work as desired, **try again with another seed** ! <br> If you use our example, don't forget to uncheck the random seed option. Otherwise, it will still use a random seed.")
        with gr.Accordion("Advanced Settings", open=True):

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():

                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                    visible=False
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                    visible=False
                )

            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=100,
                    step=0.5,
                    value=50,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

        # 添加 Gradio 示例组件
        gr.Examples(
            examples=new_examples,
            inputs=[edit_image, prompt, seed],
            outputs=[result, seed],
            fn=infer,
            cache_examples=False
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch(server_port=args.port)