File size: 20,113 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, Optional, Tuple, Union

import torch
from torch import nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from ..attention_processor import (
    Attention,
    AttentionProcessor,
    AttnProcessor2_0,
    SanaLinearAttnProcessor2_0,
)
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormSingle, RMSNorm


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class GLUMBConv(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        expand_ratio: float = 4,
        norm_type: Optional[str] = None,
        residual_connection: bool = True,
    ) -> None:
        super().__init__()

        hidden_channels = int(expand_ratio * in_channels)
        self.norm_type = norm_type
        self.residual_connection = residual_connection

        self.nonlinearity = nn.SiLU()
        self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
        self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
        self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)

        self.norm = None
        if norm_type == "rms_norm":
            self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        if self.residual_connection:
            residual = hidden_states

        hidden_states = self.conv_inverted(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.conv_depth(hidden_states)
        hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
        hidden_states = hidden_states * self.nonlinearity(gate)

        hidden_states = self.conv_point(hidden_states)

        if self.norm_type == "rms_norm":
            # move channel to the last dimension so we apply RMSnorm across channel dimension
            hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)

        if self.residual_connection:
            hidden_states = hidden_states + residual

        return hidden_states


class SanaTransformerBlock(nn.Module):
    r"""
    Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629).
    """

    def __init__(
        self,
        dim: int = 2240,
        num_attention_heads: int = 70,
        attention_head_dim: int = 32,
        dropout: float = 0.0,
        num_cross_attention_heads: Optional[int] = 20,
        cross_attention_head_dim: Optional[int] = 112,
        cross_attention_dim: Optional[int] = 2240,
        attention_bias: bool = True,
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        attention_out_bias: bool = True,
        mlp_ratio: float = 2.5,
    ) -> None:
        super().__init__()

        # 1. Self Attention
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps)
        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=None,
            processor=SanaLinearAttnProcessor2_0(),
        )

        # 2. Cross Attention
        if cross_attention_dim is not None:
            self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_cross_attention_heads,
                dim_head=cross_attention_head_dim,
                dropout=dropout,
                bias=True,
                out_bias=attention_out_bias,
                processor=AttnProcessor2_0(),
            )

        # 3. Feed-forward
        self.ff = GLUMBConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False)

        self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        height: int = None,
        width: int = None,
    ) -> torch.Tensor:
        batch_size = hidden_states.shape[0]

        # 1. Modulation
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
        ).chunk(6, dim=1)

        # 2. Self Attention
        norm_hidden_states = self.norm1(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
        norm_hidden_states = norm_hidden_states.to(hidden_states.dtype)

        attn_output = self.attn1(norm_hidden_states)
        hidden_states = hidden_states + gate_msa * attn_output

        # 3. Cross Attention
        if self.attn2 is not None:
            attn_output = self.attn2(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
            )
            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

        norm_hidden_states = norm_hidden_states.unflatten(1, (height, width)).permute(0, 3, 1, 2)
        ff_output = self.ff(norm_hidden_states)
        ff_output = ff_output.flatten(2, 3).permute(0, 2, 1)
        hidden_states = hidden_states + gate_mlp * ff_output

        return hidden_states


class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    r"""
    A 2D Transformer model introduced in [Sana](https://huggingface.co/papers/2410.10629) family of models.

    Args:
        in_channels (`int`, defaults to `32`):
            The number of channels in the input.
        out_channels (`int`, *optional*, defaults to `32`):
            The number of channels in the output.
        num_attention_heads (`int`, defaults to `70`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`, defaults to `32`):
            The number of channels in each head.
        num_layers (`int`, defaults to `20`):
            The number of layers of Transformer blocks to use.
        num_cross_attention_heads (`int`, *optional*, defaults to `20`):
            The number of heads to use for cross-attention.
        cross_attention_head_dim (`int`, *optional*, defaults to `112`):
            The number of channels in each head for cross-attention.
        cross_attention_dim (`int`, *optional*, defaults to `2240`):
            The number of channels in the cross-attention output.
        caption_channels (`int`, defaults to `2304`):
            The number of channels in the caption embeddings.
        mlp_ratio (`float`, defaults to `2.5`):
            The expansion ratio to use in the GLUMBConv layer.
        dropout (`float`, defaults to `0.0`):
            The dropout probability.
        attention_bias (`bool`, defaults to `False`):
            Whether to use bias in the attention layer.
        sample_size (`int`, defaults to `32`):
            The base size of the input latent.
        patch_size (`int`, defaults to `1`):
            The size of the patches to use in the patch embedding layer.
        norm_elementwise_affine (`bool`, defaults to `False`):
            Whether to use elementwise affinity in the normalization layer.
        norm_eps (`float`, defaults to `1e-6`):
            The epsilon value for the normalization layer.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["SanaTransformerBlock", "PatchEmbed"]

    @register_to_config
    def __init__(
        self,
        in_channels: int = 32,
        out_channels: Optional[int] = 32,
        num_attention_heads: int = 70,
        attention_head_dim: int = 32,
        num_layers: int = 20,
        num_cross_attention_heads: Optional[int] = 20,
        cross_attention_head_dim: Optional[int] = 112,
        cross_attention_dim: Optional[int] = 2240,
        caption_channels: int = 2304,
        mlp_ratio: float = 2.5,
        dropout: float = 0.0,
        attention_bias: bool = False,
        sample_size: int = 32,
        patch_size: int = 1,
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        interpolation_scale: Optional[int] = None,
    ) -> None:
        super().__init__()

        out_channels = out_channels or in_channels
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Patch Embedding
        interpolation_scale = interpolation_scale if interpolation_scale is not None else max(sample_size // 64, 1)
        self.patch_embed = PatchEmbed(
            height=sample_size,
            width=sample_size,
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=inner_dim,
            interpolation_scale=interpolation_scale,
        )

        # 2. Additional condition embeddings
        self.time_embed = AdaLayerNormSingle(inner_dim)

        self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
        self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)

        # 3. Transformer blocks
        self.transformer_blocks = nn.ModuleList(
            [
                SanaTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    num_cross_attention_heads=num_cross_attention_heads,
                    cross_attention_head_dim=cross_attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                    attention_bias=attention_bias,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                    mlp_ratio=mlp_ratio,
                )
                for _ in range(num_layers)
            ]
        )

        # 4. Output blocks
        self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)

        self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        timestep: torch.LongTensor,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 1. Input
        batch_size, num_channels, height, width = hidden_states.shape
        p = self.config.patch_size
        post_patch_height, post_patch_width = height // p, width // p

        hidden_states = self.patch_embed(hidden_states)

        timestep, embedded_timestep = self.time_embed(
            timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
        )

        encoder_hidden_states = self.caption_projection(encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])

        encoder_hidden_states = self.caption_norm(encoder_hidden_states)

        # 2. Transformer blocks
        if torch.is_grad_enabled() and self.gradient_checkpointing:

            def create_custom_forward(module, return_dict=None):
                def custom_forward(*inputs):
                    if return_dict is not None:
                        return module(*inputs, return_dict=return_dict)
                    else:
                        return module(*inputs)

                return custom_forward

            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}

            for block in self.transformer_blocks:
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    timestep,
                    post_patch_height,
                    post_patch_width,
                    **ckpt_kwargs,
                )

        else:
            for block in self.transformer_blocks:
                hidden_states = block(
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    timestep,
                    post_patch_height,
                    post_patch_width,
                )

        # 3. Normalization
        shift, scale = (
            self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
        ).chunk(2, dim=1)
        hidden_states = self.norm_out(hidden_states)

        # 4. Modulation
        hidden_states = hidden_states * (1 + scale) + shift
        hidden_states = self.proj_out(hidden_states)

        # 5. Unpatchify
        hidden_states = hidden_states.reshape(
            batch_size, post_patch_height, post_patch_width, self.config.patch_size, self.config.patch_size, -1
        )
        hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4)
        output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)