Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,113 Bytes
3b609b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from ..attention_processor import (
Attention,
AttentionProcessor,
AttnProcessor2_0,
SanaLinearAttnProcessor2_0,
)
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormSingle, RMSNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class GLUMBConv(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
expand_ratio: float = 4,
norm_type: Optional[str] = None,
residual_connection: bool = True,
) -> None:
super().__init__()
hidden_channels = int(expand_ratio * in_channels)
self.norm_type = norm_type
self.residual_connection = residual_connection
self.nonlinearity = nn.SiLU()
self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
self.norm = None
if norm_type == "rms_norm":
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.residual_connection:
residual = hidden_states
hidden_states = self.conv_inverted(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv_depth(hidden_states)
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
hidden_states = hidden_states * self.nonlinearity(gate)
hidden_states = self.conv_point(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
class SanaTransformerBlock(nn.Module):
r"""
Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629).
"""
def __init__(
self,
dim: int = 2240,
num_attention_heads: int = 70,
attention_head_dim: int = 32,
dropout: float = 0.0,
num_cross_attention_heads: Optional[int] = 20,
cross_attention_head_dim: Optional[int] = 112,
cross_attention_dim: Optional[int] = 2240,
attention_bias: bool = True,
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
attention_out_bias: bool = True,
mlp_ratio: float = 2.5,
) -> None:
super().__init__()
# 1. Self Attention
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=None,
processor=SanaLinearAttnProcessor2_0(),
)
# 2. Cross Attention
if cross_attention_dim is not None:
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_cross_attention_heads,
dim_head=cross_attention_head_dim,
dropout=dropout,
bias=True,
out_bias=attention_out_bias,
processor=AttnProcessor2_0(),
)
# 3. Feed-forward
self.ff = GLUMBConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False)
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
height: int = None,
width: int = None,
) -> torch.Tensor:
batch_size = hidden_states.shape[0]
# 1. Modulation
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
# 2. Self Attention
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
norm_hidden_states = norm_hidden_states.to(hidden_states.dtype)
attn_output = self.attn1(norm_hidden_states)
hidden_states = hidden_states + gate_msa * attn_output
# 3. Cross Attention
if self.attn2 is not None:
attn_output = self.attn2(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
norm_hidden_states = norm_hidden_states.unflatten(1, (height, width)).permute(0, 3, 1, 2)
ff_output = self.ff(norm_hidden_states)
ff_output = ff_output.flatten(2, 3).permute(0, 2, 1)
hidden_states = hidden_states + gate_mlp * ff_output
return hidden_states
class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
r"""
A 2D Transformer model introduced in [Sana](https://huggingface.co/papers/2410.10629) family of models.
Args:
in_channels (`int`, defaults to `32`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `32`):
The number of channels in the output.
num_attention_heads (`int`, defaults to `70`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, defaults to `32`):
The number of channels in each head.
num_layers (`int`, defaults to `20`):
The number of layers of Transformer blocks to use.
num_cross_attention_heads (`int`, *optional*, defaults to `20`):
The number of heads to use for cross-attention.
cross_attention_head_dim (`int`, *optional*, defaults to `112`):
The number of channels in each head for cross-attention.
cross_attention_dim (`int`, *optional*, defaults to `2240`):
The number of channels in the cross-attention output.
caption_channels (`int`, defaults to `2304`):
The number of channels in the caption embeddings.
mlp_ratio (`float`, defaults to `2.5`):
The expansion ratio to use in the GLUMBConv layer.
dropout (`float`, defaults to `0.0`):
The dropout probability.
attention_bias (`bool`, defaults to `False`):
Whether to use bias in the attention layer.
sample_size (`int`, defaults to `32`):
The base size of the input latent.
patch_size (`int`, defaults to `1`):
The size of the patches to use in the patch embedding layer.
norm_elementwise_affine (`bool`, defaults to `False`):
Whether to use elementwise affinity in the normalization layer.
norm_eps (`float`, defaults to `1e-6`):
The epsilon value for the normalization layer.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["SanaTransformerBlock", "PatchEmbed"]
@register_to_config
def __init__(
self,
in_channels: int = 32,
out_channels: Optional[int] = 32,
num_attention_heads: int = 70,
attention_head_dim: int = 32,
num_layers: int = 20,
num_cross_attention_heads: Optional[int] = 20,
cross_attention_head_dim: Optional[int] = 112,
cross_attention_dim: Optional[int] = 2240,
caption_channels: int = 2304,
mlp_ratio: float = 2.5,
dropout: float = 0.0,
attention_bias: bool = False,
sample_size: int = 32,
patch_size: int = 1,
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
interpolation_scale: Optional[int] = None,
) -> None:
super().__init__()
out_channels = out_channels or in_channels
inner_dim = num_attention_heads * attention_head_dim
# 1. Patch Embedding
interpolation_scale = interpolation_scale if interpolation_scale is not None else max(sample_size // 64, 1)
self.patch_embed = PatchEmbed(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
# 2. Additional condition embeddings
self.time_embed = AdaLayerNormSingle(inner_dim)
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
# 3. Transformer blocks
self.transformer_blocks = nn.ModuleList(
[
SanaTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
num_cross_attention_heads=num_cross_attention_heads,
cross_attention_head_dim=cross_attention_head_dim,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
mlp_ratio=mlp_ratio,
)
for _ in range(num_layers)
]
)
# 4. Output blocks
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_attention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
batch_size, num_channels, height, width = hidden_states.shape
p = self.config.patch_size
post_patch_height, post_patch_width = height // p, width // p
hidden_states = self.patch_embed(hidden_states)
timestep, embedded_timestep = self.time_embed(
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
encoder_hidden_states = self.caption_norm(encoder_hidden_states)
# 2. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
for block in self.transformer_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
post_patch_height,
post_patch_width,
**ckpt_kwargs,
)
else:
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
post_patch_height,
post_patch_width,
)
# 3. Normalization
shift, scale = (
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# 4. Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
# 5. Unpatchify
hidden_states = hidden_states.reshape(
batch_size, post_patch_height, post_patch_width, self.config.patch_size, self.config.patch_size, -1
)
hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4)
output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
|