File size: 32,043 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
# Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.loaders import FromOriginalModelMixin

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from ..attention import FeedForward
from ..attention_processor import Attention, AttentionProcessor
from ..embeddings import (
    CombinedTimestepGuidanceTextProjEmbeddings,
    CombinedTimestepTextProjEmbeddings,
    get_1d_rotary_pos_embed,
)
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class HunyuanVideoAttnProcessor2_0:
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if attn.add_q_proj is None and encoder_hidden_states is not None:
            hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)

        # 1. QKV projections
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)

        # 2. QK normalization
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # 3. Rotational positional embeddings applied to latent stream
        if image_rotary_emb is not None:
            from ..embeddings import apply_rotary_emb

            if attn.add_q_proj is None and encoder_hidden_states is not None:
                query = torch.cat(
                    [
                        apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
                        query[:, :, -encoder_hidden_states.shape[1] :],
                    ],
                    dim=2,
                )
                key = torch.cat(
                    [
                        apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
                        key[:, :, -encoder_hidden_states.shape[1] :],
                    ],
                    dim=2,
                )
            else:
                query = apply_rotary_emb(query, image_rotary_emb)
                key = apply_rotary_emb(key, image_rotary_emb)

        # 4. Encoder condition QKV projection and normalization
        if attn.add_q_proj is not None and encoder_hidden_states is not None:
            encoder_query = attn.add_q_proj(encoder_hidden_states)
            encoder_key = attn.add_k_proj(encoder_hidden_states)
            encoder_value = attn.add_v_proj(encoder_hidden_states)

            encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
            encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
            encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_query = attn.norm_added_q(encoder_query)
            if attn.norm_added_k is not None:
                encoder_key = attn.norm_added_k(encoder_key)

            query = torch.cat([query, encoder_query], dim=2)
            key = torch.cat([key, encoder_key], dim=2)
            value = torch.cat([value, encoder_value], dim=2)

        # 5. Attention
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
        hidden_states = hidden_states.to(query.dtype)

        # 6. Output projection
        if encoder_hidden_states is not None:
            hidden_states, encoder_hidden_states = (
                hidden_states[:, : -encoder_hidden_states.shape[1]],
                hidden_states[:, -encoder_hidden_states.shape[1] :],
            )

            if getattr(attn, "to_out", None) is not None:
                hidden_states = attn.to_out[0](hidden_states)
                hidden_states = attn.to_out[1](hidden_states)

            if getattr(attn, "to_add_out", None) is not None:
                encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        return hidden_states, encoder_hidden_states


class HunyuanVideoPatchEmbed(nn.Module):
    def __init__(
        self,
        patch_size: Union[int, Tuple[int, int, int]] = 16,
        in_chans: int = 3,
        embed_dim: int = 768,
    ) -> None:
        super().__init__()

        patch_size = (patch_size, patch_size, patch_size) if isinstance(patch_size, int) else patch_size
        self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.proj(hidden_states)
        hidden_states = hidden_states.flatten(2).transpose(1, 2)  # BCFHW -> BNC
        return hidden_states


class HunyuanVideoAdaNorm(nn.Module):
    def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
        super().__init__()

        out_features = out_features or 2 * in_features
        self.linear = nn.Linear(in_features, out_features)
        self.nonlinearity = nn.SiLU()

    def forward(
        self, temb: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        temb = self.linear(self.nonlinearity(temb))
        gate_msa, gate_mlp = temb.chunk(2, dim=1)
        gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
        return gate_msa, gate_mlp


class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
    def __init__(
        self,
        num_attention_heads: int,
        attention_head_dim: int,
        mlp_width_ratio: str = 4.0,
        mlp_drop_rate: float = 0.0,
        attention_bias: bool = True,
    ) -> None:
        super().__init__()

        hidden_size = num_attention_heads * attention_head_dim

        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
        self.attn = Attention(
            query_dim=hidden_size,
            cross_attention_dim=None,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            bias=attention_bias,
        )

        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
        self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)

        self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        norm_hidden_states = self.norm1(hidden_states)

        attn_output = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=None,
            attention_mask=attention_mask,
        )

        gate_msa, gate_mlp = self.norm_out(temb)
        hidden_states = hidden_states + attn_output * gate_msa

        ff_output = self.ff(self.norm2(hidden_states))
        hidden_states = hidden_states + ff_output * gate_mlp

        return hidden_states


class HunyuanVideoIndividualTokenRefiner(nn.Module):
    def __init__(
        self,
        num_attention_heads: int,
        attention_head_dim: int,
        num_layers: int,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        attention_bias: bool = True,
    ) -> None:
        super().__init__()

        self.refiner_blocks = nn.ModuleList(
            [
                HunyuanVideoIndividualTokenRefinerBlock(
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    mlp_width_ratio=mlp_width_ratio,
                    mlp_drop_rate=mlp_drop_rate,
                    attention_bias=attention_bias,
                )
                for _ in range(num_layers)
            ]
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> None:
        self_attn_mask = None
        if attention_mask is not None:
            batch_size = attention_mask.shape[0]
            seq_len = attention_mask.shape[1]
            attention_mask = attention_mask.to(hidden_states.device).bool()
            self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
            self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
            self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
            self_attn_mask[:, :, :, 0] = True

        for block in self.refiner_blocks:
            hidden_states = block(hidden_states, temb, self_attn_mask)

        return hidden_states


class HunyuanVideoTokenRefiner(nn.Module):
    def __init__(
        self,
        in_channels: int,
        num_attention_heads: int,
        attention_head_dim: int,
        num_layers: int,
        mlp_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        attention_bias: bool = True,
    ) -> None:
        super().__init__()

        hidden_size = num_attention_heads * attention_head_dim

        self.time_text_embed = CombinedTimestepTextProjEmbeddings(
            embedding_dim=hidden_size, pooled_projection_dim=in_channels
        )
        self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
        self.token_refiner = HunyuanVideoIndividualTokenRefiner(
            num_attention_heads=num_attention_heads,
            attention_head_dim=attention_head_dim,
            num_layers=num_layers,
            mlp_width_ratio=mlp_ratio,
            mlp_drop_rate=mlp_drop_rate,
            attention_bias=attention_bias,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        timestep: torch.LongTensor,
        attention_mask: Optional[torch.LongTensor] = None,
    ) -> torch.Tensor:
        if attention_mask is None:
            pooled_projections = hidden_states.mean(dim=1)
        else:
            original_dtype = hidden_states.dtype
            mask_float = attention_mask.float().unsqueeze(-1)
            pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
            pooled_projections = pooled_projections.to(original_dtype)

        temb = self.time_text_embed(timestep, pooled_projections)
        hidden_states = self.proj_in(hidden_states)
        hidden_states = self.token_refiner(hidden_states, temb, attention_mask)

        return hidden_states


class HunyuanVideoRotaryPosEmbed(nn.Module):
    def __init__(self, patch_size: int, patch_size_t: int, rope_dim: List[int], theta: float = 256.0) -> None:
        super().__init__()

        self.patch_size = patch_size
        self.patch_size_t = patch_size_t
        self.rope_dim = rope_dim
        self.theta = theta

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, num_frames, height, width = hidden_states.shape
        rope_sizes = [num_frames // self.patch_size_t, height // self.patch_size, width // self.patch_size]

        axes_grids = []
        for i in range(3):
            # Note: The following line diverges from original behaviour. We create the grid on the device, whereas
            # original implementation creates it on CPU and then moves it to device. This results in numerical
            # differences in layerwise debugging outputs, but visually it is the same.
            grid = torch.arange(0, rope_sizes[i], device=hidden_states.device, dtype=torch.float32)
            axes_grids.append(grid)
        grid = torch.meshgrid(*axes_grids, indexing="ij")  # [W, H, T]
        grid = torch.stack(grid, dim=0)  # [3, W, H, T]

        freqs = []
        for i in range(3):
            freq = get_1d_rotary_pos_embed(self.rope_dim[i], grid[i].reshape(-1), self.theta, use_real=True)
            freqs.append(freq)

        freqs_cos = torch.cat([f[0] for f in freqs], dim=1)  # (W * H * T, D / 2)
        freqs_sin = torch.cat([f[1] for f in freqs], dim=1)  # (W * H * T, D / 2)
        return freqs_cos, freqs_sin


class HunyuanVideoSingleTransformerBlock(nn.Module):
    def __init__(
        self,
        num_attention_heads: int,
        attention_head_dim: int,
        mlp_ratio: float = 4.0,
        qk_norm: str = "rms_norm",
    ) -> None:
        super().__init__()

        hidden_size = num_attention_heads * attention_head_dim
        mlp_dim = int(hidden_size * mlp_ratio)

        self.attn = Attention(
            query_dim=hidden_size,
            cross_attention_dim=None,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=hidden_size,
            bias=True,
            processor=HunyuanVideoAttnProcessor2_0(),
            qk_norm=qk_norm,
            eps=1e-6,
            pre_only=True,
        )

        self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
        self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
        self.act_mlp = nn.GELU(approximate="tanh")
        self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.shape[1]
        hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)

        residual = hidden_states

        # 1. Input normalization
        norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))

        norm_hidden_states, norm_encoder_hidden_states = (
            norm_hidden_states[:, :-text_seq_length, :],
            norm_hidden_states[:, -text_seq_length:, :],
        )

        # 2. Attention
        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            attention_mask=attention_mask,
            image_rotary_emb=image_rotary_emb,
        )
        attn_output = torch.cat([attn_output, context_attn_output], dim=1)

        # 3. Modulation and residual connection
        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states)
        hidden_states = hidden_states + residual

        hidden_states, encoder_hidden_states = (
            hidden_states[:, :-text_seq_length, :],
            hidden_states[:, -text_seq_length:, :],
        )
        return hidden_states, encoder_hidden_states


class HunyuanVideoTransformerBlock(nn.Module):
    def __init__(
        self,
        num_attention_heads: int,
        attention_head_dim: int,
        mlp_ratio: float,
        qk_norm: str = "rms_norm",
    ) -> None:
        super().__init__()

        hidden_size = num_attention_heads * attention_head_dim

        self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
        self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")

        self.attn = Attention(
            query_dim=hidden_size,
            cross_attention_dim=None,
            added_kv_proj_dim=hidden_size,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=hidden_size,
            context_pre_only=False,
            bias=True,
            processor=HunyuanVideoAttnProcessor2_0(),
            qk_norm=qk_norm,
            eps=1e-6,
        )

        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")

        self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # 1. Input normalization
        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
        norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
            encoder_hidden_states, emb=temb
        )

        # 2. Joint attention
        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            attention_mask=attention_mask,
            image_rotary_emb=freqs_cis,
        )

        # 3. Modulation and residual connection
        hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1)
        encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)

        norm_hidden_states = self.norm2(hidden_states)
        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)

        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]

        # 4. Feed-forward
        ff_output = self.ff(norm_hidden_states)
        context_ff_output = self.ff_context(norm_encoder_hidden_states)

        hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
        encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output

        return hidden_states, encoder_hidden_states


class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
    r"""
    A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo).

    Args:
        in_channels (`int`, defaults to `16`):
            The number of channels in the input.
        out_channels (`int`, defaults to `16`):
            The number of channels in the output.
        num_attention_heads (`int`, defaults to `24`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`, defaults to `128`):
            The number of channels in each head.
        num_layers (`int`, defaults to `20`):
            The number of layers of dual-stream blocks to use.
        num_single_layers (`int`, defaults to `40`):
            The number of layers of single-stream blocks to use.
        num_refiner_layers (`int`, defaults to `2`):
            The number of layers of refiner blocks to use.
        mlp_ratio (`float`, defaults to `4.0`):
            The ratio of the hidden layer size to the input size in the feedforward network.
        patch_size (`int`, defaults to `2`):
            The size of the spatial patches to use in the patch embedding layer.
        patch_size_t (`int`, defaults to `1`):
            The size of the tmeporal patches to use in the patch embedding layer.
        qk_norm (`str`, defaults to `rms_norm`):
            The normalization to use for the query and key projections in the attention layers.
        guidance_embeds (`bool`, defaults to `True`):
            Whether to use guidance embeddings in the model.
        text_embed_dim (`int`, defaults to `4096`):
            Input dimension of text embeddings from the text encoder.
        pooled_projection_dim (`int`, defaults to `768`):
            The dimension of the pooled projection of the text embeddings.
        rope_theta (`float`, defaults to `256.0`):
            The value of theta to use in the RoPE layer.
        rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`):
            The dimensions of the axes to use in the RoPE layer.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 16,
        out_channels: int = 16,
        num_attention_heads: int = 24,
        attention_head_dim: int = 128,
        num_layers: int = 20,
        num_single_layers: int = 40,
        num_refiner_layers: int = 2,
        mlp_ratio: float = 4.0,
        patch_size: int = 2,
        patch_size_t: int = 1,
        qk_norm: str = "rms_norm",
        guidance_embeds: bool = True,
        text_embed_dim: int = 4096,
        pooled_projection_dim: int = 768,
        rope_theta: float = 256.0,
        rope_axes_dim: Tuple[int] = (16, 56, 56),
    ) -> None:
        super().__init__()

        inner_dim = num_attention_heads * attention_head_dim
        out_channels = out_channels or in_channels

        # 1. Latent and condition embedders
        self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
        self.context_embedder = HunyuanVideoTokenRefiner(
            text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
        )
        self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)

        # 2. RoPE
        self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta)

        # 3. Dual stream transformer blocks
        self.transformer_blocks = nn.ModuleList(
            [
                HunyuanVideoTransformerBlock(
                    num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
                )
                for _ in range(num_layers)
            ]
        )

        # 4. Single stream transformer blocks
        self.single_transformer_blocks = nn.ModuleList(
            [
                HunyuanVideoSingleTransformerBlock(
                    num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
                )
                for _ in range(num_single_layers)
            ]
        )

        # 5. Output projection
        self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)

        self.gradient_checkpointing = False

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        timestep: torch.LongTensor,
        encoder_hidden_states: torch.Tensor,
        encoder_attention_mask: torch.Tensor,
        pooled_projections: torch.Tensor,
        guidance: torch.Tensor = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        batch_size, num_channels, num_frames, height, width = hidden_states.shape
        p, p_t = self.config.patch_size, self.config.patch_size_t
        post_patch_num_frames = num_frames // p_t
        post_patch_height = height // p
        post_patch_width = width // p

        # 1. RoPE
        image_rotary_emb = self.rope(hidden_states)

        # 2. Conditional embeddings
        temb = self.time_text_embed(timestep, guidance, pooled_projections)
        hidden_states = self.x_embedder(hidden_states)
        encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask)

        # 3. Attention mask preparation
        latent_sequence_length = hidden_states.shape[1]
        condition_sequence_length = encoder_hidden_states.shape[1]
        sequence_length = latent_sequence_length + condition_sequence_length
        attention_mask = torch.zeros(
            batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool
        )  # [B, N]

        effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int)  # [B,]
        effective_sequence_length = latent_sequence_length + effective_condition_sequence_length

        for i in range(batch_size):
            attention_mask[i, : effective_sequence_length[i]] = True
        # [B, 1, 1, N], for broadcasting across attention heads
        attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)

        # 4. Transformer blocks
        if torch.is_grad_enabled() and self.gradient_checkpointing:

            def create_custom_forward(module, return_dict=None):
                def custom_forward(*inputs):
                    if return_dict is not None:
                        return module(*inputs, return_dict=return_dict)
                    else:
                        return module(*inputs)

                return custom_forward

            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}

            for block in self.transformer_blocks:
                hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            for block in self.single_transformer_blocks:
                hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

        else:
            for block in self.transformer_blocks:
                hidden_states, encoder_hidden_states = block(
                    hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb
                )

            for block in self.single_transformer_blocks:
                hidden_states, encoder_hidden_states = block(
                    hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb
                )

        # 5. Output projection
        hidden_states = self.norm_out(hidden_states, temb)
        hidden_states = self.proj_out(hidden_states)

        hidden_states = hidden_states.reshape(
            batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p
        )
        hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
        hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (hidden_states,)

        return Transformer2DModelOutput(sample=hidden_states)