File size: 18,961 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Copyright 2024 The Genmo team and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, Optional, Tuple

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...loaders.single_file_model import FromOriginalModelMixin
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import FeedForward
from ..attention_processor import MochiAttention, MochiAttnProcessor2_0
from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormContinuous, RMSNorm


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class MochiModulatedRMSNorm(nn.Module):
    def __init__(self, eps: float):
        super().__init__()

        self.eps = eps
        self.norm = RMSNorm(0, eps, False)

    def forward(self, hidden_states, scale=None):
        hidden_states_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)

        hidden_states = self.norm(hidden_states)

        if scale is not None:
            hidden_states = hidden_states * scale

        hidden_states = hidden_states.to(hidden_states_dtype)

        return hidden_states


class MochiLayerNormContinuous(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        conditioning_embedding_dim: int,
        eps=1e-5,
        bias=True,
    ):
        super().__init__()

        # AdaLN
        self.silu = nn.SiLU()
        self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)
        self.norm = MochiModulatedRMSNorm(eps=eps)

    def forward(
        self,
        x: torch.Tensor,
        conditioning_embedding: torch.Tensor,
    ) -> torch.Tensor:
        input_dtype = x.dtype

        # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
        scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
        x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32)))

        return x.to(input_dtype)


class MochiRMSNormZero(nn.Module):
    r"""
    Adaptive RMS Norm used in Mochi.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
    """

    def __init__(
        self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False
    ) -> None:
        super().__init__()

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, hidden_dim)
        self.norm = RMSNorm(0, eps, False)

    def forward(
        self, hidden_states: torch.Tensor, emb: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        hidden_states_dtype = hidden_states.dtype

        emb = self.linear(self.silu(emb))
        scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
        hidden_states = self.norm(hidden_states.to(torch.float32)) * (1 + scale_msa[:, None].to(torch.float32))
        hidden_states = hidden_states.to(hidden_states_dtype)

        return hidden_states, gate_msa, scale_mlp, gate_mlp


@maybe_allow_in_graph
class MochiTransformerBlock(nn.Module):
    r"""
    Transformer block used in [Mochi](https://huggingface.co/genmo/mochi-1-preview).

    Args:
        dim (`int`):
            The number of channels in the input and output.
        num_attention_heads (`int`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`):
            The number of channels in each head.
        qk_norm (`str`, defaults to `"rms_norm"`):
            The normalization layer to use.
        activation_fn (`str`, defaults to `"swiglu"`):
            Activation function to use in feed-forward.
        context_pre_only (`bool`, defaults to `False`):
            Whether or not to process context-related conditions with additional layers.
        eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        pooled_projection_dim: int,
        qk_norm: str = "rms_norm",
        activation_fn: str = "swiglu",
        context_pre_only: bool = False,
        eps: float = 1e-6,
    ) -> None:
        super().__init__()

        self.context_pre_only = context_pre_only
        self.ff_inner_dim = (4 * dim * 2) // 3
        self.ff_context_inner_dim = (4 * pooled_projection_dim * 2) // 3

        self.norm1 = MochiRMSNormZero(dim, 4 * dim, eps=eps, elementwise_affine=False)

        if not context_pre_only:
            self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False)
        else:
            self.norm1_context = MochiLayerNormContinuous(
                embedding_dim=pooled_projection_dim,
                conditioning_embedding_dim=dim,
                eps=eps,
            )

        self.attn1 = MochiAttention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            bias=False,
            added_kv_proj_dim=pooled_projection_dim,
            added_proj_bias=False,
            out_dim=dim,
            out_context_dim=pooled_projection_dim,
            context_pre_only=context_pre_only,
            processor=MochiAttnProcessor2_0(),
            eps=1e-5,
        )

        # TODO(aryan): norm_context layers are not needed when `context_pre_only` is True
        self.norm2 = MochiModulatedRMSNorm(eps=eps)
        self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None

        self.norm3 = MochiModulatedRMSNorm(eps)
        self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None

        self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False)
        self.ff_context = None
        if not context_pre_only:
            self.ff_context = FeedForward(
                pooled_projection_dim,
                inner_dim=self.ff_context_inner_dim,
                activation_fn=activation_fn,
                bias=False,
            )

        self.norm4 = MochiModulatedRMSNorm(eps=eps)
        self.norm4_context = MochiModulatedRMSNorm(eps=eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        encoder_attention_mask: torch.Tensor,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)

        if not self.context_pre_only:
            norm_encoder_hidden_states, enc_gate_msa, enc_scale_mlp, enc_gate_mlp = self.norm1_context(
                encoder_hidden_states, temb
            )
        else:
            norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)

        attn_hidden_states, context_attn_hidden_states = self.attn1(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
            attention_mask=encoder_attention_mask,
        )

        hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1))
        norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32)))
        ff_output = self.ff(norm_hidden_states)
        hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1))

        if not self.context_pre_only:
            encoder_hidden_states = encoder_hidden_states + self.norm2_context(
                context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1)
            )
            norm_encoder_hidden_states = self.norm3_context(
                encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32))
            )
            context_ff_output = self.ff_context(norm_encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states + self.norm4_context(
                context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1)
            )

        return hidden_states, encoder_hidden_states


class MochiRoPE(nn.Module):
    r"""
    RoPE implementation used in [Mochi](https://huggingface.co/genmo/mochi-1-preview).

    Args:
        base_height (`int`, defaults to `192`):
            Base height used to compute interpolation scale for rotary positional embeddings.
        base_width (`int`, defaults to `192`):
            Base width used to compute interpolation scale for rotary positional embeddings.
    """

    def __init__(self, base_height: int = 192, base_width: int = 192) -> None:
        super().__init__()

        self.target_area = base_height * base_width

    def _centers(self, start, stop, num, device, dtype) -> torch.Tensor:
        edges = torch.linspace(start, stop, num + 1, device=device, dtype=dtype)
        return (edges[:-1] + edges[1:]) / 2

    def _get_positions(
        self,
        num_frames: int,
        height: int,
        width: int,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> torch.Tensor:
        scale = (self.target_area / (height * width)) ** 0.5

        t = torch.arange(num_frames, device=device, dtype=dtype)
        h = self._centers(-height * scale / 2, height * scale / 2, height, device, dtype)
        w = self._centers(-width * scale / 2, width * scale / 2, width, device, dtype)

        grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij")

        positions = torch.stack([grid_t, grid_h, grid_w], dim=-1).view(-1, 3)
        return positions

    def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor:
        with torch.autocast(freqs.device.type, torch.float32):
            # Always run ROPE freqs computation in FP32
            freqs = torch.einsum("nd,dhf->nhf", pos.to(torch.float32), freqs.to(torch.float32))

        freqs_cos = torch.cos(freqs)
        freqs_sin = torch.sin(freqs)
        return freqs_cos, freqs_sin

    def forward(
        self,
        pos_frequencies: torch.Tensor,
        num_frames: int,
        height: int,
        width: int,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        pos = self._get_positions(num_frames, height, width, device, dtype)
        rope_cos, rope_sin = self._create_rope(pos_frequencies, pos)
        return rope_cos, rope_sin


@maybe_allow_in_graph
class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
    r"""
    A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview).

    Args:
        patch_size (`int`, defaults to `2`):
            The size of the patches to use in the patch embedding layer.
        num_attention_heads (`int`, defaults to `24`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`, defaults to `128`):
            The number of channels in each head.
        num_layers (`int`, defaults to `48`):
            The number of layers of Transformer blocks to use.
        in_channels (`int`, defaults to `12`):
            The number of channels in the input.
        out_channels (`int`, *optional*, defaults to `None`):
            The number of channels in the output.
        qk_norm (`str`, defaults to `"rms_norm"`):
            The normalization layer to use.
        text_embed_dim (`int`, defaults to `4096`):
            Input dimension of text embeddings from the text encoder.
        time_embed_dim (`int`, defaults to `256`):
            Output dimension of timestep embeddings.
        activation_fn (`str`, defaults to `"swiglu"`):
            Activation function to use in feed-forward.
        max_sequence_length (`int`, defaults to `256`):
            The maximum sequence length of text embeddings supported.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["MochiTransformerBlock"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 2,
        num_attention_heads: int = 24,
        attention_head_dim: int = 128,
        num_layers: int = 48,
        pooled_projection_dim: int = 1536,
        in_channels: int = 12,
        out_channels: Optional[int] = None,
        qk_norm: str = "rms_norm",
        text_embed_dim: int = 4096,
        time_embed_dim: int = 256,
        activation_fn: str = "swiglu",
        max_sequence_length: int = 256,
    ) -> None:
        super().__init__()

        inner_dim = num_attention_heads * attention_head_dim
        out_channels = out_channels or in_channels

        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=inner_dim,
            pos_embed_type=None,
        )

        self.time_embed = MochiCombinedTimestepCaptionEmbedding(
            embedding_dim=inner_dim,
            pooled_projection_dim=pooled_projection_dim,
            text_embed_dim=text_embed_dim,
            time_embed_dim=time_embed_dim,
            num_attention_heads=8,
        )

        self.pos_frequencies = nn.Parameter(torch.full((3, num_attention_heads, attention_head_dim // 2), 0.0))
        self.rope = MochiRoPE()

        self.transformer_blocks = nn.ModuleList(
            [
                MochiTransformerBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    pooled_projection_dim=pooled_projection_dim,
                    qk_norm=qk_norm,
                    activation_fn=activation_fn,
                    context_pre_only=i == num_layers - 1,
                )
                for i in range(num_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(
            inner_dim,
            inner_dim,
            elementwise_affine=False,
            eps=1e-6,
            norm_type="layer_norm",
        )
        self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        timestep: torch.LongTensor,
        encoder_attention_mask: torch.Tensor,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> torch.Tensor:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        batch_size, num_channels, num_frames, height, width = hidden_states.shape
        p = self.config.patch_size

        post_patch_height = height // p
        post_patch_width = width // p

        temb, encoder_hidden_states = self.time_embed(
            timestep,
            encoder_hidden_states,
            encoder_attention_mask,
            hidden_dtype=hidden_states.dtype,
        )

        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
        hidden_states = self.patch_embed(hidden_states)
        hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)

        image_rotary_emb = self.rope(
            self.pos_frequencies,
            num_frames,
            post_patch_height,
            post_patch_width,
            device=hidden_states.device,
            dtype=torch.float32,
        )

        for i, block in enumerate(self.transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    encoder_attention_mask,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states, encoder_hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    encoder_attention_mask=encoder_attention_mask,
                    image_rotary_emb=image_rotary_emb,
                )
        hidden_states = self.norm_out(hidden_states, temb)
        hidden_states = self.proj_out(hidden_states)

        hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1)
        hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5)
        output = hidden_states.reshape(batch_size, -1, num_frames, height, width)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)
        return Transformer2DModelOutput(sample=output)