Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,676 Bytes
3b609b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Adapted from
https://github.com/huggingface/transformers/blob/c409cd81777fb27aadc043ed3d8339dbc020fb3b/src/transformers/quantizers/auto.py
"""
import warnings
from typing import Dict, Optional, Union
from .bitsandbytes import BnB4BitDiffusersQuantizer, BnB8BitDiffusersQuantizer
from .gguf import GGUFQuantizer
from .quantization_config import (
BitsAndBytesConfig,
GGUFQuantizationConfig,
QuantizationConfigMixin,
QuantizationMethod,
TorchAoConfig,
)
from .torchao import TorchAoHfQuantizer
AUTO_QUANTIZER_MAPPING = {
"bitsandbytes_4bit": BnB4BitDiffusersQuantizer,
"bitsandbytes_8bit": BnB8BitDiffusersQuantizer,
"gguf": GGUFQuantizer,
"torchao": TorchAoHfQuantizer,
}
AUTO_QUANTIZATION_CONFIG_MAPPING = {
"bitsandbytes_4bit": BitsAndBytesConfig,
"bitsandbytes_8bit": BitsAndBytesConfig,
"gguf": GGUFQuantizationConfig,
"torchao": TorchAoConfig,
}
class DiffusersAutoQuantizer:
"""
The auto diffusers quantizer class that takes care of automatically instantiating to the correct
`DiffusersQuantizer` given the `QuantizationConfig`.
"""
@classmethod
def from_dict(cls, quantization_config_dict: Dict):
quant_method = quantization_config_dict.get("quant_method", None)
# We need a special care for bnb models to make sure everything is BC ..
if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False):
suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit"
quant_method = QuantizationMethod.BITS_AND_BYTES + suffix
elif quant_method is None:
raise ValueError(
"The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized"
)
if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys():
raise ValueError(
f"Unknown quantization type, got {quant_method} - supported types are:"
f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
)
target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method]
return target_cls.from_dict(quantization_config_dict)
@classmethod
def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs):
# Convert it to a QuantizationConfig if the q_config is a dict
if isinstance(quantization_config, dict):
quantization_config = cls.from_dict(quantization_config)
quant_method = quantization_config.quant_method
# Again, we need a special care for bnb as we have a single quantization config
# class for both 4-bit and 8-bit quantization
if quant_method == QuantizationMethod.BITS_AND_BYTES:
if quantization_config.load_in_8bit:
quant_method += "_8bit"
else:
quant_method += "_4bit"
if quant_method not in AUTO_QUANTIZER_MAPPING.keys():
raise ValueError(
f"Unknown quantization type, got {quant_method} - supported types are:"
f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
)
target_cls = AUTO_QUANTIZER_MAPPING[quant_method]
return target_cls(quantization_config, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
model_config = cls.load_config(pretrained_model_name_or_path, **kwargs)
if getattr(model_config, "quantization_config", None) is None:
raise ValueError(
f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized."
)
quantization_config_dict = model_config.quantization_config
quantization_config = cls.from_dict(quantization_config_dict)
# Update with potential kwargs that are passed through from_pretrained.
quantization_config.update(kwargs)
return cls.from_config(quantization_config)
@classmethod
def merge_quantization_configs(
cls,
quantization_config: Union[dict, QuantizationConfigMixin],
quantization_config_from_args: Optional[QuantizationConfigMixin],
):
"""
handles situations where both quantization_config from args and quantization_config from model config are
present.
"""
if quantization_config_from_args is not None:
warning_msg = (
"You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading"
" already has a `quantization_config` attribute. The `quantization_config` from the model will be used."
)
else:
warning_msg = ""
if isinstance(quantization_config, dict):
quantization_config = cls.from_dict(quantization_config)
if warning_msg != "":
warnings.warn(warning_msg)
return quantization_config
|