Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,903 Bytes
3b609b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# Copyright 2024 The HuggingFace Team and City96. All rights reserved.
# #
# # Licensed under the Apache License, Version 2.0 (the "License");
# # you may not use this file except in compliance with the License.
# # You may obtain a copy of the License at
# #
# # http://www.apache.org/licenses/LICENSE-2.0
# #
# # Unless required by applicable law or agreed to in writing, software
# # distributed under the License is distributed on an "AS IS" BASIS,
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# # See the License for the specific language governing permissions and
# # limitations under the License.
import inspect
from contextlib import nullcontext
import gguf
import torch
import torch.nn as nn
from ...utils import is_accelerate_available
if is_accelerate_available():
import accelerate
from accelerate import init_empty_weights
from accelerate.hooks import add_hook_to_module, remove_hook_from_module
# Copied from diffusers.quantizers.bitsandbytes.utils._create_accelerate_new_hook
def _create_accelerate_new_hook(old_hook):
r"""
Creates a new hook based on the old hook. Use it only if you know what you are doing ! This method is a copy of:
https://github.com/huggingface/peft/blob/748f7968f3a31ec06a1c2b0328993319ad9a150a/src/peft/utils/other.py#L245 with
some changes
"""
old_hook_cls = getattr(accelerate.hooks, old_hook.__class__.__name__)
old_hook_attr = old_hook.__dict__
filtered_old_hook_attr = {}
old_hook_init_signature = inspect.signature(old_hook_cls.__init__)
for k in old_hook_attr.keys():
if k in old_hook_init_signature.parameters:
filtered_old_hook_attr[k] = old_hook_attr[k]
new_hook = old_hook_cls(**filtered_old_hook_attr)
return new_hook
def _replace_with_gguf_linear(model, compute_dtype, state_dict, prefix="", modules_to_not_convert=[]):
def _should_convert_to_gguf(state_dict, prefix):
weight_key = prefix + "weight"
return weight_key in state_dict and isinstance(state_dict[weight_key], GGUFParameter)
has_children = list(model.children())
if not has_children:
return
for name, module in model.named_children():
module_prefix = prefix + name + "."
_replace_with_gguf_linear(module, compute_dtype, state_dict, module_prefix, modules_to_not_convert)
if (
isinstance(module, nn.Linear)
and _should_convert_to_gguf(state_dict, module_prefix)
and name not in modules_to_not_convert
):
ctx = init_empty_weights if is_accelerate_available() else nullcontext
with ctx():
model._modules[name] = GGUFLinear(
module.in_features,
module.out_features,
module.bias is not None,
compute_dtype=compute_dtype,
)
model._modules[name].source_cls = type(module)
# Force requires_grad to False to avoid unexpected errors
model._modules[name].requires_grad_(False)
return model
def _dequantize_gguf_and_restore_linear(model, modules_to_not_convert=[]):
for name, module in model.named_children():
if isinstance(module, GGUFLinear) and name not in modules_to_not_convert:
device = module.weight.device
bias = getattr(module, "bias", None)
ctx = init_empty_weights if is_accelerate_available() else nullcontext
with ctx():
new_module = nn.Linear(
module.in_features,
module.out_features,
module.bias is not None,
device=device,
)
new_module.weight = nn.Parameter(dequantize_gguf_tensor(module.weight))
if bias is not None:
new_module.bias = bias
# Create a new hook and attach it in case we use accelerate
if hasattr(module, "_hf_hook"):
old_hook = module._hf_hook
new_hook = _create_accelerate_new_hook(old_hook)
remove_hook_from_module(module)
add_hook_to_module(new_module, new_hook)
new_module.to(device)
model._modules[name] = new_module
has_children = list(module.children())
if has_children:
_dequantize_gguf_and_restore_linear(module, modules_to_not_convert)
return model
# dequantize operations based on torch ports of GGUF dequantize_functions
# from City96
# more info: https://github.com/city96/ComfyUI-GGUF/blob/main/dequant.py
QK_K = 256
K_SCALE_SIZE = 12
def to_uint32(x):
x = x.view(torch.uint8).to(torch.int32)
return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1)
def split_block_dims(blocks, *args):
n_max = blocks.shape[1]
dims = list(args) + [n_max - sum(args)]
return torch.split(blocks, dims, dim=1)
def get_scale_min(scales):
n_blocks = scales.shape[0]
scales = scales.view(torch.uint8)
scales = scales.reshape((n_blocks, 3, 4))
d, m, m_d = torch.split(scales, scales.shape[-2] // 3, dim=-2)
sc = torch.cat([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], dim=-1)
min = torch.cat([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], dim=-1)
return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8)))
def dequantize_blocks_Q8_0(blocks, block_size, type_size, dtype=None):
d, x = split_block_dims(blocks, 2)
d = d.view(torch.float16).to(dtype)
x = x.view(torch.int8)
return d * x
def dequantize_blocks_Q5_1(blocks, block_size, type_size, dtype=None):
n_blocks = blocks.shape[0]
d, m, qh, qs = split_block_dims(blocks, 2, 2, 4)
d = d.view(torch.float16).to(dtype)
m = m.view(torch.float16).to(dtype)
qh = to_uint32(qh)
qh = qh.reshape((n_blocks, 1)) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32)
ql = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor(
[0, 4], device=d.device, dtype=torch.uint8
).reshape(1, 1, 2, 1)
qh = (qh & 1).to(torch.uint8)
ql = (ql & 0x0F).reshape((n_blocks, -1))
qs = ql | (qh << 4)
return (d * qs) + m
def dequantize_blocks_Q5_0(blocks, block_size, type_size, dtype=None):
n_blocks = blocks.shape[0]
d, qh, qs = split_block_dims(blocks, 2, 4)
d = d.view(torch.float16).to(dtype)
qh = to_uint32(qh)
qh = qh.reshape(n_blocks, 1) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32)
ql = qs.reshape(n_blocks, -1, 1, block_size // 2) >> torch.tensor(
[0, 4], device=d.device, dtype=torch.uint8
).reshape(1, 1, 2, 1)
qh = (qh & 1).to(torch.uint8)
ql = (ql & 0x0F).reshape(n_blocks, -1)
qs = (ql | (qh << 4)).to(torch.int8) - 16
return d * qs
def dequantize_blocks_Q4_1(blocks, block_size, type_size, dtype=None):
n_blocks = blocks.shape[0]
d, m, qs = split_block_dims(blocks, 2, 2)
d = d.view(torch.float16).to(dtype)
m = m.view(torch.float16).to(dtype)
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor(
[0, 4], device=d.device, dtype=torch.uint8
).reshape(1, 1, 2, 1)
qs = (qs & 0x0F).reshape(n_blocks, -1)
return (d * qs) + m
def dequantize_blocks_Q4_0(blocks, block_size, type_size, dtype=None):
n_blocks = blocks.shape[0]
d, qs = split_block_dims(blocks, 2)
d = d.view(torch.float16).to(dtype)
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor(
[0, 4], device=d.device, dtype=torch.uint8
).reshape((1, 1, 2, 1))
qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8
return d * qs
def dequantize_blocks_Q6_K(blocks, block_size, type_size, dtype=None):
n_blocks = blocks.shape[0]
(
ql,
qh,
scales,
d,
) = split_block_dims(blocks, QK_K // 2, QK_K // 4, QK_K // 16)
scales = scales.view(torch.int8).to(dtype)
d = d.view(torch.float16).to(dtype)
d = (d * scales).reshape((n_blocks, QK_K // 16, 1))
ql = ql.reshape((n_blocks, -1, 1, 64)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(
(1, 1, 2, 1)
)
ql = (ql & 0x0F).reshape((n_blocks, -1, 32))
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape(
(1, 1, 4, 1)
)
qh = (qh & 0x03).reshape((n_blocks, -1, 32))
q = (ql | (qh << 4)).to(torch.int8) - 32
q = q.reshape((n_blocks, QK_K // 16, -1))
return (d * q).reshape((n_blocks, QK_K))
def dequantize_blocks_Q5_K(blocks, block_size, type_size, dtype=None):
n_blocks = blocks.shape[0]
d, dmin, scales, qh, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE, QK_K // 8)
d = d.view(torch.float16).to(dtype)
dmin = dmin.view(torch.float16).to(dtype)
sc, m = get_scale_min(scales)
d = (d * sc).reshape((n_blocks, -1, 1))
dm = (dmin * m).reshape((n_blocks, -1, 1))
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(
(1, 1, 2, 1)
)
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.arange(0, 8, device=d.device, dtype=torch.uint8).reshape(
(1, 1, 8, 1)
)
ql = (ql & 0x0F).reshape((n_blocks, -1, 32))
qh = (qh & 0x01).reshape((n_blocks, -1, 32))
q = ql | (qh << 4)
return (d * q - dm).reshape((n_blocks, QK_K))
def dequantize_blocks_Q4_K(blocks, block_size, type_size, dtype=None):
n_blocks = blocks.shape[0]
d, dmin, scales, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE)
d = d.view(torch.float16).to(dtype)
dmin = dmin.view(torch.float16).to(dtype)
sc, m = get_scale_min(scales)
d = (d * sc).reshape((n_blocks, -1, 1))
dm = (dmin * m).reshape((n_blocks, -1, 1))
qs = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(
(1, 1, 2, 1)
)
qs = (qs & 0x0F).reshape((n_blocks, -1, 32))
return (d * qs - dm).reshape((n_blocks, QK_K))
def dequantize_blocks_Q3_K(blocks, block_size, type_size, dtype=None):
n_blocks = blocks.shape[0]
hmask, qs, scales, d = split_block_dims(blocks, QK_K // 8, QK_K // 4, 12)
d = d.view(torch.float16).to(dtype)
lscales, hscales = scales[:, :8], scales[:, 8:]
lscales = lscales.reshape((n_blocks, 1, 8)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(
(1, 2, 1)
)
lscales = lscales.reshape((n_blocks, 16))
hscales = hscales.reshape((n_blocks, 1, 4)) >> torch.tensor(
[0, 2, 4, 6], device=d.device, dtype=torch.uint8
).reshape((1, 4, 1))
hscales = hscales.reshape((n_blocks, 16))
scales = (lscales & 0x0F) | ((hscales & 0x03) << 4)
scales = scales.to(torch.int8) - 32
dl = (d * scales).reshape((n_blocks, 16, 1))
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape(
(1, 1, 4, 1)
)
qh = hmask.reshape(n_blocks, -1, 1, 32) >> torch.arange(0, 8, device=d.device, dtype=torch.uint8).reshape(
(1, 1, 8, 1)
)
ql = ql.reshape((n_blocks, 16, QK_K // 16)) & 3
qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & 1) ^ 1
q = ql.to(torch.int8) - (qh << 2).to(torch.int8)
return (dl * q).reshape((n_blocks, QK_K))
def dequantize_blocks_Q2_K(blocks, block_size, type_size, dtype=None):
n_blocks = blocks.shape[0]
scales, qs, d, dmin = split_block_dims(blocks, QK_K // 16, QK_K // 4, 2)
d = d.view(torch.float16).to(dtype)
dmin = dmin.view(torch.float16).to(dtype)
# (n_blocks, 16, 1)
dl = (d * (scales & 0xF)).reshape((n_blocks, QK_K // 16, 1))
ml = (dmin * (scales >> 4)).reshape((n_blocks, QK_K // 16, 1))
shift = torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1))
qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & 3
qs = qs.reshape((n_blocks, QK_K // 16, 16))
qs = dl * qs - ml
return qs.reshape((n_blocks, -1))
def dequantize_blocks_BF16(blocks, block_size, type_size, dtype=None):
return (blocks.view(torch.int16).to(torch.int32) << 16).view(torch.float32)
GGML_QUANT_SIZES = gguf.GGML_QUANT_SIZES
dequantize_functions = {
gguf.GGMLQuantizationType.BF16: dequantize_blocks_BF16,
gguf.GGMLQuantizationType.Q8_0: dequantize_blocks_Q8_0,
gguf.GGMLQuantizationType.Q5_1: dequantize_blocks_Q5_1,
gguf.GGMLQuantizationType.Q5_0: dequantize_blocks_Q5_0,
gguf.GGMLQuantizationType.Q4_1: dequantize_blocks_Q4_1,
gguf.GGMLQuantizationType.Q4_0: dequantize_blocks_Q4_0,
gguf.GGMLQuantizationType.Q6_K: dequantize_blocks_Q6_K,
gguf.GGMLQuantizationType.Q5_K: dequantize_blocks_Q5_K,
gguf.GGMLQuantizationType.Q4_K: dequantize_blocks_Q4_K,
gguf.GGMLQuantizationType.Q3_K: dequantize_blocks_Q3_K,
gguf.GGMLQuantizationType.Q2_K: dequantize_blocks_Q2_K,
}
SUPPORTED_GGUF_QUANT_TYPES = list(dequantize_functions.keys())
def _quant_shape_from_byte_shape(shape, type_size, block_size):
return (*shape[:-1], shape[-1] // type_size * block_size)
def dequantize_gguf_tensor(tensor):
if not hasattr(tensor, "quant_type"):
return tensor
quant_type = tensor.quant_type
dequant_fn = dequantize_functions[quant_type]
block_size, type_size = GGML_QUANT_SIZES[quant_type]
tensor = tensor.view(torch.uint8)
shape = _quant_shape_from_byte_shape(tensor.shape, type_size, block_size)
n_blocks = tensor.numel() // type_size
blocks = tensor.reshape((n_blocks, type_size))
dequant = dequant_fn(blocks, block_size, type_size)
dequant = dequant.reshape(shape)
return dequant.as_tensor()
class GGUFParameter(torch.nn.Parameter):
def __new__(cls, data, requires_grad=False, quant_type=None):
data = data if data is not None else torch.empty(0)
self = torch.Tensor._make_subclass(cls, data, requires_grad)
self.quant_type = quant_type
return self
def as_tensor(self):
return torch.Tensor._make_subclass(torch.Tensor, self, self.requires_grad)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
result = super().__torch_function__(func, types, args, kwargs)
# When converting from original format checkpoints we often use splits, cats etc on tensors
# this method ensures that the returned tensor type from those operations remains GGUFParameter
# so that we preserve quant_type information
quant_type = None
for arg in args:
if isinstance(arg, list) and (arg[0], GGUFParameter):
quant_type = arg[0].quant_type
break
if isinstance(arg, GGUFParameter):
quant_type = arg.quant_type
break
if isinstance(result, torch.Tensor):
return cls(result, quant_type=quant_type)
# Handle tuples and lists
elif isinstance(result, (tuple, list)):
# Preserve the original type (tuple or list)
wrapped = [cls(x, quant_type=quant_type) if isinstance(x, torch.Tensor) else x for x in result]
return type(result)(wrapped)
else:
return result
class GGUFLinear(nn.Linear):
def __init__(
self,
in_features,
out_features,
bias=False,
compute_dtype=None,
device=None,
) -> None:
super().__init__(in_features, out_features, bias, device)
self.compute_dtype = compute_dtype
def forward(self, inputs):
weight = dequantize_gguf_tensor(self.weight)
weight = weight.to(self.compute_dtype)
bias = self.bias.to(self.compute_dtype)
output = torch.nn.functional.linear(inputs, weight, bias)
return output
|