File size: 14,033 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple

import torch


class IncrementalPCA:
    """
    An implementation of Incremental Principal Components Analysis (IPCA) that leverages PyTorch for GPU acceleration.
    Adapted from https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/_incremental_pca.py

    This class provides methods to fit the model on data incrementally in batches, and to transform new data based on
    the principal components learned during the fitting process.

    Args:
        n_components (int, optional): Number of components to keep. If `None`, it's set to the minimum of the
            number of samples and features. Defaults to None.
        copy (bool): If False, input data will be overwritten. Defaults to True.
        batch_size (int, optional): The number of samples to use for each batch. Only needed if self.fit is called.
            If `None`, it's inferred from the data and set to `5 * n_features`. Defaults to None.
        svd_driver (str, optional): name of the cuSOLVER method to be used for torch.linalg.svd. This keyword
            argument only works on CUDA inputs. Available options are: None, gesvd, gesvdj, and gesvda. Defaults to
            None.
        lowrank (bool, optional): Whether to use torch.svd_lowrank instead of torch.linalg.svd which can be faster.
            Defaults to False.
        lowrank_q (int, optional): For an adequate approximation of n_components, this parameter defaults to
            n_components * 2.
        lowrank_niter (int, optional): Number of subspace iterations to conduct for torch.svd_lowrank.
            Defaults to 4.
        lowrank_seed (int, optional): Seed for making results of torch.svd_lowrank reproducible.
    """

    def __init__(
        self,
        n_components: Optional[int] = None,
        copy: Optional[bool] = True,
        batch_size: Optional[int] = None,
        svd_driver: Optional[str] = None,
        lowrank: bool = False,
        lowrank_q: Optional[int] = None,
        lowrank_niter: int = 4,
        lowrank_seed: Optional[int] = None,
    ):
        self.n_components = n_components
        self.copy = copy
        self.batch_size = batch_size
        self.svd_driver = svd_driver
        self.lowrank = lowrank
        self.lowrank_q = lowrank_q
        self.lowrank_niter = lowrank_niter
        self.lowrank_seed = lowrank_seed

        self.n_features_ = None

        if self.lowrank:
            self._validate_lowrank_params()

    def _validate_lowrank_params(self):
        if self.lowrank_q is None:
            if self.n_components is None:
                raise ValueError("n_components must be specified when using lowrank mode with lowrank_q=None.")
            self.lowrank_q = self.n_components * 2
        elif self.lowrank_q < self.n_components:
            raise ValueError("lowrank_q must be greater than or equal to n_components.")

    def _svd_fn_full(self, X):
        return torch.linalg.svd(X, full_matrices=False, driver=self.svd_driver)

    def _svd_fn_lowrank(self, X):
        seed_enabled = self.lowrank_seed is not None
        with torch.random.fork_rng(enabled=seed_enabled):
            if seed_enabled:
                torch.manual_seed(self.lowrank_seed)
            U, S, V = torch.svd_lowrank(X, q=self.lowrank_q, niter=self.lowrank_niter)
            return U, S, V.mH

    def _validate_data(self, X) -> torch.Tensor:
        """
        Validates and converts the input data `X` to the appropriate tensor format.

        Args:
            X (torch.Tensor): Input data.

        Returns:
            torch.Tensor: Converted to appropriate format.
        """
        valid_dtypes = [torch.float32, torch.float64]

        if not isinstance(X, torch.Tensor):
            X = torch.tensor(X, dtype=torch.float32)
        elif self.copy:
            X = X.clone()

        n_samples, n_features = X.shape
        if self.n_components is None:
            pass
        elif self.n_components > n_features:
            raise ValueError(
                f"n_components={self.n_components} invalid for n_features={n_features}, "
                "need more rows than columns for IncrementalPCA processing."
            )
        elif self.n_components > n_samples:
            raise ValueError(
                f"n_components={self.n_components} must be less or equal to the batch number of samples {n_samples}"
            )

        if X.dtype not in valid_dtypes:
            X = X.to(torch.float32)

        return X

    @staticmethod
    def _incremental_mean_and_var(
        X, last_mean, last_variance, last_sample_count
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Computes the incremental mean and variance for the data `X`.

        Args:
            X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features).
            last_mean (torch.Tensor): The previous mean tensor with shape (n_features,).
            last_variance (torch.Tensor): The previous variance tensor with shape (n_features,).
            last_sample_count (torch.Tensor): The count tensor of samples processed before the current batch.

        Returns:
            Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Updated mean, variance tensors, and total sample count.
        """
        if X.shape[0] == 0:
            return last_mean, last_variance, last_sample_count

        if last_sample_count > 0:
            if last_mean is None:
                raise ValueError("last_mean should not be None if last_sample_count > 0.")
            if last_variance is None:
                raise ValueError("last_variance should not be None if last_sample_count > 0.")

        new_sample_count = torch.tensor([X.shape[0]], device=X.device)
        updated_sample_count = last_sample_count + new_sample_count

        if last_mean is None:
            last_sum = torch.zeros(X.shape[1], dtype=torch.float64, device=X.device)
        else:
            last_sum = last_mean * last_sample_count

        new_sum = X.sum(dim=0, dtype=torch.float64)

        updated_mean = (last_sum + new_sum) / updated_sample_count

        T = new_sum / new_sample_count
        temp = X - T
        correction = temp.sum(dim=0, dtype=torch.float64).square()
        temp.square_()
        new_unnormalized_variance = temp.sum(dim=0, dtype=torch.float64)
        new_unnormalized_variance -= correction / new_sample_count
        if last_variance is None:
            updated_variance = new_unnormalized_variance / updated_sample_count
        else:
            last_unnormalized_variance = last_variance * last_sample_count
            last_over_new_count = last_sample_count.double() / new_sample_count
            updated_unnormalized_variance = (
                last_unnormalized_variance
                + new_unnormalized_variance
                + last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum).square()
            )
            updated_variance = updated_unnormalized_variance / updated_sample_count

        return updated_mean, updated_variance, updated_sample_count

    @staticmethod
    def _svd_flip(u, v, u_based_decision=True) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Adjusts the signs of the singular vectors from the SVD decomposition for deterministic output.

        This method ensures that the output remains consistent across different runs.

        Args:
            u (torch.Tensor): Left singular vectors tensor.
            v (torch.Tensor): Right singular vectors tensor.
            u_based_decision (bool, optional): If True, uses the left singular vectors to determine the sign flipping.
                Defaults to True.

        Returns:
            Tuple[torch.Tensor, torch.Tensor]: Adjusted left and right singular vectors tensors.
        """
        if u_based_decision:
            max_abs_cols = torch.argmax(torch.abs(u), dim=0)
            signs = torch.sign(u[max_abs_cols, range(u.shape[1])])
        else:
            max_abs_rows = torch.argmax(torch.abs(v), dim=1)
            signs = torch.sign(v[range(v.shape[0]), max_abs_rows])
        u *= signs[: u.shape[1]].view(1, -1)
        v *= signs.view(-1, 1)
        return u, v

    def fit(self, X, check_input=True):
        """
        Fits the model with data `X` using minibatches of size `batch_size`.

        Args:
            X (torch.Tensor): The input data tensor with shape (n_samples, n_features).
            check_input (bool, optional): If True, validates the input. Defaults to True.

        Returns:
            IncrementalPCA: The fitted IPCA model.
        """
        if check_input:
            X = self._validate_data(X)
        n_samples, n_features = X.shape
        if self.batch_size is None:
            self.batch_size = 5 * n_features

        for batch in self.gen_batches(n_samples, self.batch_size, min_batch_size=self.n_components or 0):
            self.partial_fit(X[batch], check_input=False)

        return self

    def partial_fit(self, X, check_input=True):
        """
        Incrementally fits the model with batch data `X`.

        Args:
            X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features).
            check_input (bool, optional): If True, validates the input. Defaults to True.

        Returns:
            IncrementalPCA: The updated IPCA model after processing the batch.
        """
        first_pass = not hasattr(self, "components_")

        if check_input:
            X = self._validate_data(X)
        n_samples, n_features = X.shape

        # Initialize attributes to avoid errors during the first call to partial_fit
        if first_pass:
            self.mean_ = None  # Will be initialized properly in _incremental_mean_and_var based on data dimensions
            self.var_ = None  # Will be initialized properly in _incremental_mean_and_var based on data dimensions
            self.n_samples_seen_ = torch.tensor([0], device=X.device)
            self.n_features_ = n_features
            if not self.n_components:
                self.n_components = min(n_samples, n_features)

        if n_features != self.n_features_:
            raise ValueError(
                "Number of features of the new batch does not match the number of features of the first batch."
            )

        col_mean, col_var, n_total_samples = self._incremental_mean_and_var(
            X, self.mean_, self.var_, self.n_samples_seen_
        )

        if first_pass:
            X -= col_mean
        else:
            col_batch_mean = torch.mean(X, dim=0)
            X -= col_batch_mean
            mean_correction_factor = torch.sqrt((self.n_samples_seen_.double() / n_total_samples) * n_samples)
            mean_correction = mean_correction_factor * (self.mean_ - col_batch_mean)
            X = torch.vstack(
                (
                    self.singular_values_.view((-1, 1)) * self.components_,
                    X,
                    mean_correction,
                )
            )

        if self.lowrank:
            U, S, Vt = self._svd_fn_lowrank(X)
        else:
            U, S, Vt = self._svd_fn_full(X)
        U, Vt = self._svd_flip(U, Vt, u_based_decision=False)
        explained_variance = S**2 / (n_total_samples - 1)
        explained_variance_ratio = S**2 / torch.sum(col_var * n_total_samples)

        self.n_samples_seen_ = n_total_samples
        self.components_ = Vt[: self.n_components]
        self.singular_values_ = S[: self.n_components]
        self.mean_ = col_mean
        self.var_ = col_var
        self.explained_variance_ = explained_variance[: self.n_components]
        self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components]
        if self.n_components not in (n_samples, n_features):
            self.noise_variance_ = explained_variance[self.n_components :].mean()
        else:
            self.noise_variance_ = torch.tensor(0.0, device=X.device)
        return self

    def transform(self, X) -> torch.Tensor:
        """
        Applies dimensionality reduction to `X`.

        The input data `X` is projected on the first principal components previously extracted from a training set.

        Args:
            X (torch.Tensor): New data tensor with shape (n_samples, n_features) to be transformed.

        Returns:
            torch.Tensor: Transformed data tensor with shape (n_samples, n_components).
        """
        X = X - self.mean_
        return torch.mm(X.double(), self.components_.T).to(X.dtype)

    @staticmethod
    def gen_batches(n: int, batch_size: int, min_batch_size: int = 0):
        """Generator to create slices containing `batch_size` elements from 0 to `n`.

        The last slice may contain less than `batch_size` elements, when `batch_size` does not divide `n`.

        Args:
            n (int): Size of the sequence.
            batch_size (int): Number of elements in each batch.
            min_batch_size (int, optional): Minimum number of elements in each batch. Defaults to 0.

        Yields:
            slice: A slice of `batch_size` elements.
        """
        start = 0
        for _ in range(int(n // batch_size)):
            end = start + batch_size
            if end + min_batch_size > n:
                continue
            yield slice(start, end)
            start = end
        if start < n:
            yield slice(start, n)