File size: 27,903 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import os
import warnings
from typing import Optional

import huggingface_hub
import torch
from huggingface_hub import file_exists, hf_hub_download
from huggingface_hub.errors import EntryNotFoundError, LocalEntryNotFoundError
from packaging import version
from safetensors.torch import load_file as safe_load_file

from .constants import PEFT_TYPE_TO_PREFIX_MAPPING
from .other import (
    EMBEDDING_LAYER_NAMES,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    check_file_exists_on_hf_hub,
    infer_device,
)
from .peft_types import PeftType


def has_valid_embedding_base_layer(layer):
    """Check if the layer has an embedding base layer"""
    return hasattr(layer, "base_layer") and isinstance(layer.base_layer, (torch.nn.Linear, torch.nn.Embedding))


def get_embedding_layer_name(model, layer, is_embedding_in_target_modules):
    """Get the name of the embedding module for a given layer."""
    for name, module in model.named_modules():
        if (not is_embedding_in_target_modules and module == layer) or module == getattr(layer, "base_layer", None):
            return name
    return None


def get_peft_model_state_dict(
    model, state_dict=None, adapter_name="default", unwrap_compiled=False, save_embedding_layers="auto"
):
    """
    Get the state dict of the Peft model.

    Args:
        model ([`PeftModel`]): The Peft model. When using torch.nn.DistributedDataParallel, DeepSpeed or FSDP,
            the model should be the underlying model/unwrapped model (i.e. model.module).
        state_dict (`dict`, *optional*, defaults to `None`):
            The state dict of the model. If not provided, the state dict of the passed model will be used.
        adapter_name (`str`, *optional*, defaults to `"default"`):
            The name of the adapter whose state dict should be returned.
        unwrap_compiled (`bool`, *optional*, defaults to `False`):
            Whether to unwrap the model if torch.compile was used.
        save_embedding_layers (`Union[bool, str]`, , *optional*, defaults to `auto`):
            If `True`, save the embedding layers in addition to adapter weights. If `auto`, checks the common embedding
            layers `peft.utils.other.EMBEDDING_LAYER_NAMES` in config's `target_modules` when available. Based on it
            sets the boolean flag. This only works for 🤗 transformers models.
    """
    if unwrap_compiled:
        model = getattr(model, "_orig_mod", model)

    config = model.peft_config[adapter_name]
    if state_dict is None:
        state_dict = model.state_dict()

    # TUNER SPECIFIC CODE
    if config.peft_type in (PeftType.LORA, PeftType.ADALORA):
        # to_return = lora_state_dict(model, bias=model.peft_config.bias)
        # adapted from `https://github.com/microsoft/LoRA/blob/main/loralib/utils.py`
        # to be used directly with the state dict which is necessary when using DeepSpeed or FSDP
        bias = config.bias
        if bias == "none":
            to_return = {k: state_dict[k] for k in state_dict if "lora_" in k}
        elif bias == "all":
            to_return = {k: state_dict[k] for k in state_dict if "lora_" in k or "bias" in k}
        elif bias == "lora_only":
            to_return = {}
            for k in state_dict:
                if "lora_" in k:
                    to_return[k] = state_dict[k]
                    bias_name = k.split("lora_")[0] + "bias"
                    if bias_name in state_dict:
                        to_return[bias_name] = state_dict[bias_name]
        else:
            raise NotImplementedError
        to_return = {k: v for k, v in to_return.items() if (("lora_" in k and adapter_name in k) or ("bias" in k) or ("expert" in k))} # change for moe lora
        if config.peft_type == PeftType.ADALORA:
            rank_pattern = config.rank_pattern
            if rank_pattern is not None:
                rank_pattern = {k.replace(f".{adapter_name}", ""): v for k, v in rank_pattern.items()}
                config.rank_pattern = rank_pattern
                to_return = model.resize_state_dict_by_rank_pattern(rank_pattern, to_return, adapter_name)

        if config.use_dora:
            # Here we take care of a refactor of DoRA which changed lora_magnitude_vector from a ParameterDict to a
            # ModuleDict with a DoraLayer instance. The old parameter is now the "weight" attribute of that layer. Since
            # we want the state_dict format not to change, we remove the "weight" part.
            new_dora_suffix = f"lora_magnitude_vector.{adapter_name}.weight"

            def renamed_dora_weights(k):
                if k.endswith(new_dora_suffix):
                    k = k[:-7]  # remove ".weight"
                return k

            to_return = {renamed_dora_weights(k): v for k, v in to_return.items()}

    elif config.peft_type == PeftType.BOFT:
        bias = config.bias
        if bias == "none":
            to_return = {k: state_dict[k] for k in state_dict if "boft_" in k}
        elif bias == "all":
            to_return = {k: state_dict[k] for k in state_dict if "boft_" in k or "bias" in k}
        elif bias == "boft_only":
            to_return = {}
            for k in state_dict:
                if "boft_" in k:
                    to_return[k] = state_dict[k]
                    bias_name = k.split("boft_")[0] + "bias"
                    if bias_name in state_dict:
                        to_return[bias_name] = state_dict[bias_name]
        else:
            raise NotImplementedError

    elif config.peft_type == PeftType.LOHA:
        to_return = {k: state_dict[k] for k in state_dict if "hada_" in k}

    elif config.peft_type == PeftType.LOKR:
        to_return = {k: state_dict[k] for k in state_dict if "lokr_" in k}

    elif config.peft_type == PeftType.ADAPTION_PROMPT:
        to_return = {k: state_dict[k] for k in state_dict if k.split(".")[-1].startswith("adaption_")}

    elif config.is_prompt_learning:
        to_return = {}
        if config.peft_type == PeftType.MULTITASK_PROMPT_TUNING:
            to_return["prefix_task_cols"] = model.prompt_encoder[adapter_name].prefix_task_cols
            to_return["prefix_task_rows"] = model.prompt_encoder[adapter_name].prefix_task_rows
            prompt_embeddings = model.prompt_encoder[adapter_name].embedding.weight
        else:
            if config.inference_mode:
                prompt_embeddings = model.prompt_encoder[adapter_name].embedding.weight
            else:
                prompt_embeddings = model.get_prompt_embedding_to_save(adapter_name)
        to_return["prompt_embeddings"] = prompt_embeddings

    elif config.peft_type == PeftType.IA3:
        to_return = {k: state_dict[k] for k in state_dict if "ia3_" in k}

    elif config.peft_type == PeftType.OFT:
        to_return = {k: state_dict[k] for k in state_dict if "oft_" in k}

    elif config.peft_type == PeftType.POLY:
        to_return = {k: state_dict[k] for k in state_dict if "poly_" in k}

    elif config.peft_type == PeftType.LN_TUNING:
        to_return = {k: state_dict[k] for k in state_dict if "ln_tuning_" in k}

    elif config.peft_type == PeftType.VERA:
        to_return = {k: state_dict[k] for k in state_dict if "vera_lambda_" in k}
        if config.save_projection:
            # TODO: adding vera_A and vera_B to `self.get_base_layer` would
            # make name to match here difficult to predict.
            if f"base_model.vera_A.{adapter_name}" not in state_dict:
                raise ValueError(
                    "Model was initialised to not save vera_A and vera_B but config now specifies to save projection!"
                    " Set `config.save_projection` to `False`."
                )
            to_return["base_model.vera_A." + adapter_name] = state_dict["base_model.vera_A." + adapter_name]
            to_return["base_model.vera_B." + adapter_name] = state_dict["base_model.vera_B." + adapter_name]
    elif config.peft_type == PeftType.FOURIERFT:
        to_return = {k: state_dict[k] for k in state_dict if "fourierft_" in k}
    elif config.peft_type == PeftType.XLORA:
        to_return = {k: state_dict[k] for k in state_dict if "internal_xlora_classifier" in k}
    elif config.peft_type == PeftType.HRA:
        to_return = {k: state_dict[k] for k in state_dict if "hra_" in k}
    elif config.peft_type == PeftType.VBLORA:
        to_return = {}
        # choose the most efficient dtype for indices
        if config.num_vectors < 2**8:
            indices_dtype = torch.uint8
        elif config.num_vectors < 2**15:
            indices_dtype = torch.int16
        elif config.num_vectors < 2**31:
            indices_dtype = torch.int32
        else:
            indices_dtype = torch.int64
        if config.save_only_topk_weights:
            # in save_only_topk_weights mode, we save topk_indices and topk_weights for parameter efficiency
            for k in state_dict:
                if "vblora_logits" in k:
                    logits, indices = state_dict[k].topk(config.topk)
                    to_return.update({k + "_topk_indices": indices.to(dtype=indices_dtype)})
                    to_return.update({k + "_topk_weights": torch.softmax(logits, dim=-1)[:, :, :-1].contiguous()})
        else:
            to_return = {k: state_dict[k] for k in state_dict if "vblora_logits" in k}
        to_return["base_model.vblora_vector_bank." + adapter_name] = state_dict[
            "base_model.vblora_vector_bank." + adapter_name
        ]
    elif config.peft_type == PeftType.BONE:
        to_return = {k: state_dict[k] for k in state_dict if "bone_" in k}
    else:
        raise ValueError(f"Unknown PEFT type passed: {config.peft_type}")

    # MODULES TO SAVE
    if getattr(model, "modules_to_save", None) is not None:
        for key, value in state_dict.items():
            if any(f"{module_name}.modules_to_save.{adapter_name}" in key for module_name in model.modules_to_save):
                to_return[key.replace("modules_to_save.", "")] = value

    # DEAL WITH EMBEDDINGS
    # check the common embedding layers in `target_modules` to reset `save_embedding_layers` if necessary
    is_embedding_in_target_modules = False
    if (
        save_embedding_layers == "auto"
        and hasattr(config, "target_modules")
        and any(k in config.target_modules for k in EMBEDDING_LAYER_NAMES)
    ):
        warnings.warn("Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.")
        save_embedding_layers = is_embedding_in_target_modules = True
    elif save_embedding_layers == "auto":
        vocab_size = getattr(getattr(model, "config", None), "vocab_size", None)
        model_id = getattr(config, "base_model_name_or_path", None)

        # For some models e.g. diffusers the text config file is stored in a subfolder
        # we need to make sure we can download that config.
        has_base_config = False

        # ensure that this check is not performed in HF offline mode, see #1452
        if model_id is not None:
            local_config_exists = os.path.exists(os.path.join(model_id, "config.json"))
            exists = local_config_exists or check_file_exists_on_hf_hub(model_id, "config.json")
            if exists is None:
                # check failed, could not determine if it exists or not
                warnings.warn(
                    f"Could not find a config file in {model_id} - will assume that the vocabulary was not modified."
                )
                has_base_config = False
            else:
                has_base_config = exists

        # check if the vocab size of the base model is different from the vocab size of the finetuned model
        if (
            vocab_size
            and model_id
            and has_base_config
            and (vocab_size != model.config.__class__.from_pretrained(model_id).vocab_size)
        ):
            warnings.warn(
                "Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning."
            )
            save_embedding_layers = True
        else:
            save_embedding_layers = False

    if save_embedding_layers and hasattr(model, "get_input_embeddings"):
        for layer in [model.get_input_embeddings(), model.get_output_embeddings()]:
            if not is_embedding_in_target_modules or has_valid_embedding_base_layer(layer):
                # support from version >= 0.6.2
                embedding_module_name = get_embedding_layer_name(model, layer, is_embedding_in_target_modules)
                if embedding_module_name:
                    to_return.update({k: v for k, v in state_dict.items() if embedding_module_name in k})
    elif save_embedding_layers:
        warnings.warn("Could not identify embedding layer(s) because the model is not a 🤗 transformers model.")

    # REMOVE ADAPTER NAME
    to_return = {k.replace(f".{adapter_name}", ""): v for k, v in to_return.items()}
    return to_return


def _find_mismatched_keys(
    model: torch.nn.Module, peft_model_state_dict: dict[str, torch.Tensor], ignore_mismatched_sizes: bool = False
) -> tuple[dict[str, torch.Tensor], list[tuple[str, tuple[int, ...], tuple[int, ...]]]]:
    if not ignore_mismatched_sizes:
        return peft_model_state_dict, []

    mismatched = []
    state_dict = model.state_dict()
    for key, tensor in peft_model_state_dict.items():
        if key not in state_dict:
            continue

        # see https://github.com/huggingface/transformers/blob/09f9f566de83eef1f13ee83b5a1bbeebde5c80c1/src/transformers/modeling_utils.py#L3858-L3864
        if (state_dict[key].shape[-1] == 1) and (state_dict[key].numel() * 2 == tensor.numel()):
            # This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size
            # differences. Without matching with module type or paramter type it seems like a practical way to detect
            # valid 4bit weights.
            continue

        if state_dict[key].shape != tensor.shape:
            mismatched.append((key, tensor.shape, state_dict[key].shape))

    for key, _, _ in mismatched:
        del peft_model_state_dict[key]

    return peft_model_state_dict, mismatched


def _insert_adapter_name_into_state_dict(
    state_dict: dict[str, torch.Tensor], adapter_name: str, parameter_prefix: str
) -> dict[str, torch.Tensor]:
    """Utility function to remap the state_dict keys to fit the PEFT model by inserting the adapter name."""
    peft_model_state_dict = {}
    for key, val in state_dict.items():
        if parameter_prefix in key:
            suffix = key.split(parameter_prefix)[1]
            if "." in suffix and "expert" not in suffix:  # change for moe setting
                suffix_to_replace = ".".join(suffix.split(".")[1:])
                key = key.replace(suffix_to_replace, f"{adapter_name}.{suffix_to_replace}")
            elif "expert" in suffix:
                key=key
            else:
                key = f"{key}.{adapter_name}"
            peft_model_state_dict[key] = val
        else:
            peft_model_state_dict[key] = val
    return peft_model_state_dict


def set_peft_model_state_dict(
    model,
    peft_model_state_dict,
    adapter_name="default",
    ignore_mismatched_sizes: bool = False,
    low_cpu_mem_usage: bool = False,
):
    """
    Set the state dict of the Peft model.

    Args:
        model ([`PeftModel`]):
            The Peft model.
        peft_model_state_dict (`dict`):
            The state dict of the Peft model.
        adapter_name (`str`, *optional*, defaults to `"default"`):
            The name of the adapter whose state dict should be set.
        ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
            Whether to ignore mismatched in the state dict.
        low_cpu_mem_usage (`bool`, `optional`, defaults to `False`):
            This argument must be `True` if the `model` was loaded with adapter weights on the meta device, e.g. after
            calling `inject_adapter_in_model` with `low_cpu_mem_usage=True`. Otherwise, leave it as `False`.

    """
    config = model.peft_config[adapter_name]
    state_dict = {}
    if getattr(model, "modules_to_save", None) is not None:
        for key, value in peft_model_state_dict.items():
            if any(module_name in key for module_name in model.modules_to_save):
                for module_name in model.modules_to_save:
                    if module_name in key:
                        key = key.replace(module_name, f"{module_name}.modules_to_save.{adapter_name}")
                        break
            state_dict[key] = value
    else:
        state_dict = peft_model_state_dict

    if config.peft_type in PEFT_TYPE_TO_PREFIX_MAPPING:
        peft_model_state_dict = {}
        parameter_prefix = PEFT_TYPE_TO_PREFIX_MAPPING[config.peft_type]
        if config.peft_type == PeftType.VBLORA and config.save_only_topk_weights:
            num_vectors, _ = model.vblora_vector_bank[adapter_name].shape
            state_dict_keys = list(state_dict.keys())
            for k in state_dict_keys:
                # in save_only_topk_weights mode, only topk_indices and topk_weights are saved
                # note that topk_indices and topk_weights serve as an efficient representation of the logits
                # so we need to recover the logits from the topk_indices and topk_weights
                if "_topk_indices" in k:
                    v = state_dict[k].to(torch.long)
                    original_key = k.replace("_topk_indices", "")
                    # find the corresponding topk_weights from the state_dict
                    topk_weights = state_dict[k.replace("_topk_indices", "_topk_weights")]
                    # as we only save the first k-1 topk_weights, here we recover the last one
                    topk_weights = torch.cat([topk_weights, 1 - topk_weights.sum(-1, keepdim=True)], dim=-1)
                    # convert the weights to logits
                    topk_logits = torch.log(topk_weights)
                    matrix = (
                        torch.zeros([*(topk_logits.shape[:-1]), num_vectors])
                        .fill_(float("-inf"))
                        .to(topk_logits.device)
                        .scatter(-1, v, topk_logits)
                    )
                    # add logits to the state_dict
                    state_dict[original_key] = matrix
                    # delete the topk_indices and topk_weights from the state_dict
                    del state_dict[k]
                    del state_dict[k.replace("_topk_indices", "_topk_weights")]

        peft_model_state_dict = _insert_adapter_name_into_state_dict(
            state_dict, adapter_name=adapter_name, parameter_prefix=parameter_prefix
        )

        if config.peft_type == PeftType.ADALORA:
            rank_pattern = config.rank_pattern
            if rank_pattern is not None:
                model.resize_modules_by_rank_pattern(rank_pattern, adapter_name)
        elif config.peft_type == PeftType.VERA:
            if config.save_projection and "base_model.vera_A" not in peft_model_state_dict:
                raise ValueError(
                    "Specified to load vera_A and vera_B from state dictionary however they were not present!"
                )
            elif not config.save_projection and "base_model.vera_A" in peft_model_state_dict:
                warnings.warn(
                    "Specified to not load vera_A and vera_B from state dictionary however they are present in state"
                    " dictionary! Consider using them to ensure checkpoint loading is correct on all platforms using"
                    " `peft_config.save_projection = True`"
                )
            elif not config.save_projection:  # and no vera_A in state dictionary
                warnings.warn(
                    "Specified to not load vera_A and vera_B from state dictionary. This means we will be relying on"
                    " PRNG initialisation to restore these projections using `config.projection_prng_key`, which may"
                    " not be accurate on all system configurations."
                )
        elif config.peft_type == PeftType.LORA:
            # Here we take care of a refactor of DoRA which changed lora_magnitude_vector from a ParameterDict to a
            # ModuleDict with a DoraLayer instance. The old parameter is now the "weight" attribute of that layer.
            old_dora_suffix = f"lora_magnitude_vector.{adapter_name}"

            def renamed_dora_weights(k):
                if k.endswith(old_dora_suffix):
                    k = k + ".weight"
                return k

            peft_model_state_dict = {renamed_dora_weights(k): v for k, v in peft_model_state_dict.items()}

    elif config.is_prompt_learning or config.peft_type == PeftType.ADAPTION_PROMPT:
        peft_model_state_dict = state_dict
    elif config.peft_type == PeftType.XLORA:
        peft_model_state_dict = state_dict
    else:
        raise NotImplementedError

    peft_model_state_dict, mismatched_keys = _find_mismatched_keys(
        model, peft_model_state_dict, ignore_mismatched_sizes=ignore_mismatched_sizes
    )
    if low_cpu_mem_usage:
        load_result = model.load_state_dict(peft_model_state_dict, strict=False, assign=True)
        # ensure that the correct device is set
        for module in model.modules():
            if hasattr(module, "_move_adapter_to_device_of_base_layer"):
                module._move_adapter_to_device_of_base_layer(adapter_name)
                if module.moe_lora is True:   # change for moe setting
                    for i in range(module.num_experts):
                        module._move_adapter_to_device_of_base_layer(f"expert_{i}")
    else:
        load_result = model.load_state_dict(peft_model_state_dict, strict=False)

    if config.is_prompt_learning:
        model.prompt_encoder[adapter_name].embedding.load_state_dict(
            {"weight": peft_model_state_dict["prompt_embeddings"]}, strict=True
        )

    if config.peft_type == PeftType.MULTITASK_PROMPT_TUNING:
        model.prompt_encoder[adapter_name].load_state_dict(peft_model_state_dict, strict=False)

    if mismatched_keys:
        # see https://github.com/huggingface/transformers/blob/09f9f566de83eef1f13ee83b5a1bbeebde5c80c1/src/transformers/modeling_utils.py#L4039
        mismatched_warning = "\n".join(
            [
                f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                for key, shape1, shape2 in mismatched_keys
            ]
        )
        msg = (
            f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint "
            f"and are being ignored because you passed `ignore_mismatched_sizes=True`: {mismatched_warning}."
        )
        warnings.warn(msg)
    return load_result


def torch_load(*args, weights_only=True, **kwargs):
    """Call torch.load and handle weights_only.

    Defaults to weights_only=True to anticipate upcoming switch on the PyTorch side.

    """
    # TODO: weights_only was added in 1.13, remove if 1.12 no longer needs to be supported
    if version.parse(torch.__version__) < version.parse("1.13"):
        return torch.load(*args, **kwargs)
    return torch.load(*args, weights_only=weights_only, **kwargs)


def load_peft_weights(model_id: str, device: Optional[str] = None, **hf_hub_download_kwargs) -> dict:
    r"""
    A helper method to load the PEFT weights from the HuggingFace Hub or locally

    Args:
        model_id (`str`):
            The local path to the adapter weights or the name of the adapter to load from the HuggingFace Hub.
        device (`str`):
            The device to load the weights onto.
        hf_hub_download_kwargs (`dict`):
            Additional arguments to pass to the `hf_hub_download` method when loading from the HuggingFace Hub.
    """
    path = (
        os.path.join(model_id, hf_hub_download_kwargs["subfolder"])
        if hf_hub_download_kwargs.get("subfolder", None) is not None
        else model_id
    )

    if device is None:
        device = infer_device()

    def get_hub_filename(use_safetensors=True):
        weights_name = SAFETENSORS_WEIGHTS_NAME if use_safetensors else WEIGHTS_NAME
        return (
            os.path.join(hf_hub_download_kwargs["subfolder"], weights_name)
            if hf_hub_download_kwargs.get("subfolder", None) is not None
            else weights_name
        )

    if os.path.exists(os.path.join(path, SAFETENSORS_WEIGHTS_NAME)):
        filename = os.path.join(path, SAFETENSORS_WEIGHTS_NAME)
        use_safetensors = True
    elif os.path.exists(os.path.join(path, WEIGHTS_NAME)):
        filename = os.path.join(path, WEIGHTS_NAME)
        use_safetensors = False
    elif huggingface_hub.constants.HF_HUB_OFFLINE:
        # if in offline mode, check if we can find the adapter file locally
        hub_filename = get_hub_filename(use_safetensors=True)
        try:
            filename = hf_hub_download(model_id, hub_filename, local_files_only=True)
            use_safetensors = True
        except LocalEntryNotFoundError:
            # Could not find safetensors, try pickle. If this also fails, it's fine to let the error be raised here, as
            # it means that the user tried to load a non-cached model in offline mode.
            hub_filename = get_hub_filename(use_safetensors=False)
            filename = hf_hub_download(model_id, hub_filename, local_files_only=True)
            use_safetensors = False
    else:
        token = hf_hub_download_kwargs.get("token", None)
        if token is None:
            token = hf_hub_download_kwargs.get("use_auth_token", None)

        hub_filename = get_hub_filename(use_safetensors=True)
        has_remote_safetensors_file = file_exists(
            repo_id=model_id,
            filename=hub_filename,
            revision=hf_hub_download_kwargs.get("revision", None),
            repo_type=hf_hub_download_kwargs.get("repo_type", None),
            token=token,
        )
        use_safetensors = has_remote_safetensors_file

        if has_remote_safetensors_file:
            # Priority 1: load safetensors weights
            filename = hf_hub_download(
                model_id,
                SAFETENSORS_WEIGHTS_NAME,
                **hf_hub_download_kwargs,
            )
        else:
            try:
                filename = hf_hub_download(model_id, WEIGHTS_NAME, **hf_hub_download_kwargs)
            except EntryNotFoundError:
                raise ValueError(
                    f"Can't find weights for {model_id} in {model_id} or in the Hugging Face Hub. "
                    f"Please check that the file {WEIGHTS_NAME} or {SAFETENSORS_WEIGHTS_NAME} is present at {model_id}."
                )

    if use_safetensors:
        if hasattr(torch.backends, "mps") and (device == torch.device("mps")):
            adapters_weights = safe_load_file(filename, device="cpu")
        else:
            adapters_weights = safe_load_file(filename, device=device)
    else:
        adapters_weights = torch_load(filename, map_location=torch.device(device))

    return adapters_weights