File size: 17,518 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# Copyright 2024 The RhymesAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import is_torch_version, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import FeedForward
from ..attention_processor import AllegroAttnProcessor2_0, Attention
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormSingle


logger = logging.get_logger(__name__)


@maybe_allow_in_graph
class AllegroTransformerBlock(nn.Module):
    r"""
    Transformer block used in [Allegro](https://github.com/rhymes-ai/Allegro) model.

    Args:
        dim (`int`):
            The number of channels in the input and output.
        num_attention_heads (`int`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`):
            The number of channels in each head.
        dropout (`float`, defaults to `0.0`):
            The dropout probability to use.
        cross_attention_dim (`int`, defaults to `2304`):
            The dimension of the cross attention features.
        activation_fn (`str`, defaults to `"gelu-approximate"`):
            Activation function to be used in feed-forward.
        attention_bias (`bool`, defaults to `False`):
            Whether or not to use bias in attention projection layers.
        only_cross_attention (`bool`, defaults to `False`):
        norm_elementwise_affine (`bool`, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_eps (`float`, defaults to `1e-5`):
            Epsilon value for normalization layers.
        final_dropout (`bool` defaults to `False`):
            Whether to apply a final dropout after the last feed-forward layer.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        attention_bias: bool = False,
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
    ):
        super().__init__()

        # 1. Self Attention
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=None,
            processor=AllegroAttnProcessor2_0(),
        )

        # 2. Cross Attention
        self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            processor=AllegroAttnProcessor2_0(),
        )

        # 3. Feed Forward
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
        )

        # 4. Scale-shift
        self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        temb: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb=None,
    ) -> torch.Tensor:
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + temb.reshape(batch_size, 6, -1)
        ).chunk(6, dim=1)
        norm_hidden_states = self.norm1(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
        norm_hidden_states = norm_hidden_states.squeeze(1)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=None,
            attention_mask=attention_mask,
            image_rotary_emb=image_rotary_emb,
        )
        attn_output = gate_msa * attn_output

        hidden_states = attn_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        # 1. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = hidden_states

            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                image_rotary_emb=None,
            )
            hidden_states = attn_output + hidden_states

        # 2. Feed-forward
        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

        ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp * ff_output

        hidden_states = ff_output + hidden_states

        # TODO(aryan): maybe following line is not required
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states


class AllegroTransformer3DModel(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    """
    A 3D Transformer model for video-like data.

    Args:
        patch_size (`int`, defaults to `2`):
            The size of spatial patches to use in the patch embedding layer.
        patch_size_t (`int`, defaults to `1`):
            The size of temporal patches to use in the patch embedding layer.
        num_attention_heads (`int`, defaults to `24`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`, defaults to `96`):
            The number of channels in each head.
        in_channels (`int`, defaults to `4`):
            The number of channels in the input.
        out_channels (`int`, *optional*, defaults to `4`):
            The number of channels in the output.
        num_layers (`int`, defaults to `32`):
            The number of layers of Transformer blocks to use.
        dropout (`float`, defaults to `0.0`):
            The dropout probability to use.
        cross_attention_dim (`int`, defaults to `2304`):
            The dimension of the cross attention features.
        attention_bias (`bool`, defaults to `True`):
            Whether or not to use bias in the attention projection layers.
        sample_height (`int`, defaults to `90`):
            The height of the input latents.
        sample_width (`int`, defaults to `160`):
            The width of the input latents.
        sample_frames (`int`, defaults to `22`):
            The number of frames in the input latents.
        activation_fn (`str`, defaults to `"gelu-approximate"`):
            Activation function to use in feed-forward.
        norm_elementwise_affine (`bool`, defaults to `False`):
            Whether or not to use elementwise affine in normalization layers.
        norm_eps (`float`, defaults to `1e-6`):
            The epsilon value to use in normalization layers.
        caption_channels (`int`, defaults to `4096`):
            Number of channels to use for projecting the caption embeddings.
        interpolation_scale_h (`float`, defaults to `2.0`):
            Scaling factor to apply in 3D positional embeddings across height dimension.
        interpolation_scale_w (`float`, defaults to `2.0`):
            Scaling factor to apply in 3D positional embeddings across width dimension.
        interpolation_scale_t (`float`, defaults to `2.2`):
            Scaling factor to apply in 3D positional embeddings across time dimension.
    """

    @register_to_config
    def __init__(
        self,
        patch_size: int = 2,
        patch_size_t: int = 1,
        num_attention_heads: int = 24,
        attention_head_dim: int = 96,
        in_channels: int = 4,
        out_channels: int = 4,
        num_layers: int = 32,
        dropout: float = 0.0,
        cross_attention_dim: int = 2304,
        attention_bias: bool = True,
        sample_height: int = 90,
        sample_width: int = 160,
        sample_frames: int = 22,
        activation_fn: str = "gelu-approximate",
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        caption_channels: int = 4096,
        interpolation_scale_h: float = 2.0,
        interpolation_scale_w: float = 2.0,
        interpolation_scale_t: float = 2.2,
    ):
        super().__init__()

        self.inner_dim = num_attention_heads * attention_head_dim

        interpolation_scale_t = (
            interpolation_scale_t
            if interpolation_scale_t is not None
            else ((sample_frames - 1) // 16 + 1)
            if sample_frames % 2 == 1
            else sample_frames // 16
        )
        interpolation_scale_h = interpolation_scale_h if interpolation_scale_h is not None else sample_height / 30
        interpolation_scale_w = interpolation_scale_w if interpolation_scale_w is not None else sample_width / 40

        # 1. Patch embedding
        self.pos_embed = PatchEmbed(
            height=sample_height,
            width=sample_width,
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=self.inner_dim,
            pos_embed_type=None,
        )

        # 2. Transformer blocks
        self.transformer_blocks = nn.ModuleList(
            [
                AllegroTransformerBlock(
                    self.inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                )
                for _ in range(num_layers)
            ]
        )

        # 3. Output projection & norm
        self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels)

        # 4. Timestep embeddings
        self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False)

        # 5. Caption projection
        self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=self.inner_dim)

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        timestep: torch.LongTensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        return_dict: bool = True,
    ):
        batch_size, num_channels, num_frames, height, width = hidden_states.shape
        p_t = self.config.patch_size_t
        p = self.config.patch_size

        post_patch_num_frames = num_frames // p_t
        post_patch_height = height // p
        post_patch_width = width // p

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)        attention_mask_vid, attention_mask_img = None, None
        if attention_mask is not None and attention_mask.ndim == 4:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #   (keep = +0,     discard = -10000.0)
            # b, frame+use_image_num, h, w -> a video with images
            # b, 1, h, w -> only images
            attention_mask = attention_mask.to(hidden_states.dtype)
            attention_mask = attention_mask[:, :num_frames]  # [batch_size, num_frames, height, width]

            if attention_mask.numel() > 0:
                attention_mask = attention_mask.unsqueeze(1)  # [batch_size, 1, num_frames, height, width]
                attention_mask = F.max_pool3d(attention_mask, kernel_size=(p_t, p, p), stride=(p_t, p, p))
                attention_mask = attention_mask.flatten(1).view(batch_size, 1, -1)

            attention_mask = (
                (1 - attention_mask.bool().to(hidden_states.dtype)) * -10000.0 if attention_mask.numel() > 0 else None
            )

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 1. Timestep embeddings
        timestep, embedded_timestep = self.adaln_single(
            timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
        )

        # 2. Patch embeddings
        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
        hidden_states = self.pos_embed(hidden_states)
        hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)

        encoder_hidden_states = self.caption_projection(encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1])

        # 3. Transformer blocks
        for i, block in enumerate(self.transformer_blocks):
            # TODO(aryan): Implement gradient checkpointing
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    timestep,
                    attention_mask,
                    encoder_attention_mask,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=timestep,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    image_rotary_emb=image_rotary_emb,
                )

        # 4. Output normalization & projection
        shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
        hidden_states = self.norm_out(hidden_states)

        # Modulation
        hidden_states = hidden_states * (1 + scale) + shift
        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states.squeeze(1)

        # 5. Unpatchify
        hidden_states = hidden_states.reshape(
            batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p, p, -1
        )
        hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
        output = hidden_states.reshape(batch_size, -1, num_frames, height, width)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)