Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,298 Bytes
3b609b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# Copyright 2024 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Union
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.attention import FeedForward
from ...models.attention_processor import (
Attention,
AttentionProcessor,
CogVideoXAttnProcessor2_0,
)
from ...models.modeling_utils import ModelMixin
from ...models.normalization import AdaLayerNormContinuous
from ...utils import is_torch_version, logging
from ..embeddings import CogView3CombinedTimestepSizeEmbeddings, CogView3PlusPatchEmbed
from ..modeling_outputs import Transformer2DModelOutput
from ..normalization import CogView3PlusAdaLayerNormZeroTextImage
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class CogView3PlusTransformerBlock(nn.Module):
r"""
Transformer block used in [CogView](https://github.com/THUDM/CogView3) model.
Args:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`):
The number of channels in each head.
time_embed_dim (`int`):
The number of channels in timestep embedding.
"""
def __init__(
self,
dim: int = 2560,
num_attention_heads: int = 64,
attention_head_dim: int = 40,
time_embed_dim: int = 512,
):
super().__init__()
self.norm1 = CogView3PlusAdaLayerNormZeroTextImage(embedding_dim=time_embed_dim, dim=dim)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
out_dim=dim,
bias=True,
qk_norm="layer_norm",
elementwise_affine=False,
eps=1e-6,
processor=CogVideoXAttnProcessor2_0(),
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
emb: torch.Tensor,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.size(1)
# norm & modulate
(
norm_hidden_states,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
norm_encoder_hidden_states,
c_gate_msa,
c_shift_mlp,
c_scale_mlp,
c_gate_mlp,
) = self.norm1(hidden_states, encoder_hidden_states, emb)
# attention
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states
)
hidden_states = hidden_states + gate_msa.unsqueeze(1) * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + c_gate_msa.unsqueeze(1) * attn_encoder_hidden_states
# norm & modulate
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
# feed-forward
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output[:, text_seq_length:]
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * ff_output[:, :text_seq_length]
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return hidden_states, encoder_hidden_states
class CogView3PlusTransformer2DModel(ModelMixin, ConfigMixin):
r"""
The Transformer model introduced in [CogView3: Finer and Faster Text-to-Image Generation via Relay
Diffusion](https://huggingface.co/papers/2403.05121).
Args:
patch_size (`int`, defaults to `2`):
The size of the patches to use in the patch embedding layer.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
num_layers (`int`, defaults to `30`):
The number of layers of Transformer blocks to use.
attention_head_dim (`int`, defaults to `40`):
The number of channels in each head.
num_attention_heads (`int`, defaults to `64`):
The number of heads to use for multi-head attention.
out_channels (`int`, defaults to `16`):
The number of channels in the output.
text_embed_dim (`int`, defaults to `4096`):
Input dimension of text embeddings from the text encoder.
time_embed_dim (`int`, defaults to `512`):
Output dimension of timestep embeddings.
condition_dim (`int`, defaults to `256`):
The embedding dimension of the input SDXL-style resolution conditions (original_size, target_size,
crop_coords).
pos_embed_max_size (`int`, defaults to `128`):
The maximum resolution of the positional embeddings, from which slices of shape `H x W` are taken and added
to input patched latents, where `H` and `W` are the latent height and width respectively. A value of 128
means that the maximum supported height and width for image generation is `128 * vae_scale_factor *
patch_size => 128 * 8 * 2 => 2048`.
sample_size (`int`, defaults to `128`):
The base resolution of input latents. If height/width is not provided during generation, this value is used
to determine the resolution as `sample_size * vae_scale_factor => 128 * 8 => 1024`
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
num_layers: int = 30,
attention_head_dim: int = 40,
num_attention_heads: int = 64,
out_channels: int = 16,
text_embed_dim: int = 4096,
time_embed_dim: int = 512,
condition_dim: int = 256,
pos_embed_max_size: int = 128,
sample_size: int = 128,
):
super().__init__()
self.out_channels = out_channels
self.inner_dim = num_attention_heads * attention_head_dim
# CogView3 uses 3 additional SDXL-like conditions - original_size, target_size, crop_coords
# Each of these are sincos embeddings of shape 2 * condition_dim
self.pooled_projection_dim = 3 * 2 * condition_dim
self.patch_embed = CogView3PlusPatchEmbed(
in_channels=in_channels,
hidden_size=self.inner_dim,
patch_size=patch_size,
text_hidden_size=text_embed_dim,
pos_embed_max_size=pos_embed_max_size,
)
self.time_condition_embed = CogView3CombinedTimestepSizeEmbeddings(
embedding_dim=time_embed_dim,
condition_dim=condition_dim,
pooled_projection_dim=self.pooled_projection_dim,
timesteps_dim=self.inner_dim,
)
self.transformer_blocks = nn.ModuleList(
[
CogView3PlusTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
time_embed_dim=time_embed_dim,
)
for _ in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(
embedding_dim=self.inner_dim,
conditioning_embedding_dim=time_embed_dim,
elementwise_affine=False,
eps=1e-6,
)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: torch.LongTensor,
original_size: torch.Tensor,
target_size: torch.Tensor,
crop_coords: torch.Tensor,
return_dict: bool = True,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
"""
The [`CogView3PlusTransformer2DModel`] forward method.
Args:
hidden_states (`torch.Tensor`):
Input `hidden_states` of shape `(batch size, channel, height, width)`.
encoder_hidden_states (`torch.Tensor`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) of shape
`(batch_size, sequence_len, text_embed_dim)`
timestep (`torch.LongTensor`):
Used to indicate denoising step.
original_size (`torch.Tensor`):
CogView3 uses SDXL-like micro-conditioning for original image size as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
target_size (`torch.Tensor`):
CogView3 uses SDXL-like micro-conditioning for target image size as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crop_coords (`torch.Tensor`):
CogView3 uses SDXL-like micro-conditioning for crop coordinates as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
`torch.Tensor` or [`~models.transformer_2d.Transformer2DModelOutput`]:
The denoised latents using provided inputs as conditioning.
"""
height, width = hidden_states.shape[-2:]
text_seq_length = encoder_hidden_states.shape[1]
hidden_states = self.patch_embed(
hidden_states, encoder_hidden_states
) # takes care of adding positional embeddings too.
emb = self.time_condition_embed(timestep, original_size, target_size, crop_coords, hidden_states.dtype)
encoder_hidden_states = hidden_states[:, :text_seq_length]
hidden_states = hidden_states[:, text_seq_length:]
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
emb,
**ckpt_kwargs,
)
else:
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
emb=emb,
)
hidden_states = self.norm_out(hidden_states, emb)
hidden_states = self.proj_out(hidden_states) # (batch_size, height*width, patch_size*patch_size*out_channels)
# unpatchify
patch_size = self.config.patch_size
height = height // patch_size
width = width // patch_size
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], height, width, self.out_channels, patch_size, patch_size)
)
hidden_states = torch.einsum("nhwcpq->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
|