Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from contextlib import nullcontext | |
from ..models.embeddings import ( | |
ImageProjection, | |
MultiIPAdapterImageProjection, | |
) | |
from ..models.modeling_utils import load_model_dict_into_meta | |
from ..utils import ( | |
is_accelerate_available, | |
is_torch_version, | |
logging, | |
) | |
if is_accelerate_available(): | |
pass | |
logger = logging.get_logger(__name__) | |
class FluxTransformer2DLoadersMixin: | |
""" | |
Load layers into a [`FluxTransformer2DModel`]. | |
""" | |
def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False): | |
if low_cpu_mem_usage: | |
if is_accelerate_available(): | |
from accelerate import init_empty_weights | |
else: | |
low_cpu_mem_usage = False | |
logger.warning( | |
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
" install accelerate\n```\n." | |
) | |
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `low_cpu_mem_usage=False`." | |
) | |
updated_state_dict = {} | |
image_projection = None | |
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext | |
if "proj.weight" in state_dict: | |
# IP-Adapter | |
num_image_text_embeds = 4 | |
if state_dict["proj.weight"].shape[0] == 65536: | |
num_image_text_embeds = 16 | |
clip_embeddings_dim = state_dict["proj.weight"].shape[-1] | |
cross_attention_dim = state_dict["proj.weight"].shape[0] // num_image_text_embeds | |
with init_context(): | |
image_projection = ImageProjection( | |
cross_attention_dim=cross_attention_dim, | |
image_embed_dim=clip_embeddings_dim, | |
num_image_text_embeds=num_image_text_embeds, | |
) | |
for key, value in state_dict.items(): | |
diffusers_name = key.replace("proj", "image_embeds") | |
updated_state_dict[diffusers_name] = value | |
if not low_cpu_mem_usage: | |
image_projection.load_state_dict(updated_state_dict, strict=True) | |
else: | |
load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype) | |
return image_projection | |
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False): | |
from ..models.attention_processor import ( | |
FluxIPAdapterJointAttnProcessor2_0, | |
) | |
if low_cpu_mem_usage: | |
if is_accelerate_available(): | |
from accelerate import init_empty_weights | |
else: | |
low_cpu_mem_usage = False | |
logger.warning( | |
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
" install accelerate\n```\n." | |
) | |
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `low_cpu_mem_usage=False`." | |
) | |
# set ip-adapter cross-attention processors & load state_dict | |
attn_procs = {} | |
key_id = 0 | |
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext | |
for name in self.attn_processors.keys(): | |
if name.startswith("single_transformer_blocks"): | |
attn_processor_class = self.attn_processors[name].__class__ | |
attn_procs[name] = attn_processor_class() | |
else: | |
cross_attention_dim = self.config.joint_attention_dim | |
hidden_size = self.inner_dim | |
attn_processor_class = FluxIPAdapterJointAttnProcessor2_0 | |
num_image_text_embeds = [] | |
for state_dict in state_dicts: | |
if "proj.weight" in state_dict["image_proj"]: | |
num_image_text_embed = 4 | |
if state_dict["image_proj"]["proj.weight"].shape[0] == 65536: | |
num_image_text_embed = 16 | |
# IP-Adapter | |
num_image_text_embeds += [num_image_text_embed] | |
with init_context(): | |
attn_procs[name] = attn_processor_class( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1.0, | |
num_tokens=num_image_text_embeds, | |
dtype=self.dtype, | |
device=self.device, | |
) | |
value_dict = {} | |
for i, state_dict in enumerate(state_dicts): | |
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]}) | |
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]}) | |
value_dict.update({f"to_k_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_k_ip.bias"]}) | |
value_dict.update({f"to_v_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_v_ip.bias"]}) | |
if not low_cpu_mem_usage: | |
attn_procs[name].load_state_dict(value_dict) | |
else: | |
device = self.device | |
dtype = self.dtype | |
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype) | |
key_id += 1 | |
return attn_procs | |
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False): | |
if not isinstance(state_dicts, list): | |
state_dicts = [state_dicts] | |
self.encoder_hid_proj = None | |
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) | |
self.set_attn_processor(attn_procs) | |
image_projection_layers = [] | |
for state_dict in state_dicts: | |
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers( | |
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage | |
) | |
image_projection_layers.append(image_projection_layer) | |
self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) | |
self.config.encoder_hid_dim_type = "ip_image_proj" | |
self.to(dtype=self.dtype, device=self.device) | |