ICEdit / icedit /diffusers /loaders /transformer_flux.py
RiverZ's picture
upd
3b609b9
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import nullcontext
from ..models.embeddings import (
ImageProjection,
MultiIPAdapterImageProjection,
)
from ..models.modeling_utils import load_model_dict_into_meta
from ..utils import (
is_accelerate_available,
is_torch_version,
logging,
)
if is_accelerate_available():
pass
logger = logging.get_logger(__name__)
class FluxTransformer2DLoadersMixin:
"""
Load layers into a [`FluxTransformer2DModel`].
"""
def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False):
if low_cpu_mem_usage:
if is_accelerate_available():
from accelerate import init_empty_weights
else:
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
updated_state_dict = {}
image_projection = None
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
if "proj.weight" in state_dict:
# IP-Adapter
num_image_text_embeds = 4
if state_dict["proj.weight"].shape[0] == 65536:
num_image_text_embeds = 16
clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
cross_attention_dim = state_dict["proj.weight"].shape[0] // num_image_text_embeds
with init_context():
image_projection = ImageProjection(
cross_attention_dim=cross_attention_dim,
image_embed_dim=clip_embeddings_dim,
num_image_text_embeds=num_image_text_embeds,
)
for key, value in state_dict.items():
diffusers_name = key.replace("proj", "image_embeds")
updated_state_dict[diffusers_name] = value
if not low_cpu_mem_usage:
image_projection.load_state_dict(updated_state_dict, strict=True)
else:
load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype)
return image_projection
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
from ..models.attention_processor import (
FluxIPAdapterJointAttnProcessor2_0,
)
if low_cpu_mem_usage:
if is_accelerate_available():
from accelerate import init_empty_weights
else:
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
# set ip-adapter cross-attention processors & load state_dict
attn_procs = {}
key_id = 0
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
for name in self.attn_processors.keys():
if name.startswith("single_transformer_blocks"):
attn_processor_class = self.attn_processors[name].__class__
attn_procs[name] = attn_processor_class()
else:
cross_attention_dim = self.config.joint_attention_dim
hidden_size = self.inner_dim
attn_processor_class = FluxIPAdapterJointAttnProcessor2_0
num_image_text_embeds = []
for state_dict in state_dicts:
if "proj.weight" in state_dict["image_proj"]:
num_image_text_embed = 4
if state_dict["image_proj"]["proj.weight"].shape[0] == 65536:
num_image_text_embed = 16
# IP-Adapter
num_image_text_embeds += [num_image_text_embed]
with init_context():
attn_procs[name] = attn_processor_class(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=num_image_text_embeds,
dtype=self.dtype,
device=self.device,
)
value_dict = {}
for i, state_dict in enumerate(state_dicts):
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
value_dict.update({f"to_k_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_k_ip.bias"]})
value_dict.update({f"to_v_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_v_ip.bias"]})
if not low_cpu_mem_usage:
attn_procs[name].load_state_dict(value_dict)
else:
device = self.device
dtype = self.dtype
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)
key_id += 1
return attn_procs
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
if not isinstance(state_dicts, list):
state_dicts = [state_dicts]
self.encoder_hid_proj = None
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
self.set_attn_processor(attn_procs)
image_projection_layers = []
for state_dict in state_dicts:
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
)
image_projection_layers.append(image_projection_layer)
self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
self.config.encoder_hid_dim_type = "ip_image_proj"
self.to(dtype=self.dtype, device=self.device)